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Chapter 2

The MCDF method

In the following sections we present an overview of the multi-configuration Dirac-Fock
method (MCDF) approximation for the calculation of atomic states, level energies and
transition data. Unless indicated Hartree atomic units will be used throughout. This the-
ory is the basis of the GRASP package [10].

2.1 Relativistic orbitals

A relativistic (or Dirac) orbital |nκm〉 is an eigenfunction of the angular momentum oper-
ators ĵ2 and ĵz where ĵ = l̂ + ŝ, (sum of orbital and spin) i.e.

ĵ2 |nκm〉 = j(j + 1) |nκm〉 with j =
1
2
,
3
2
, · · · (2.1)

ĵz |nκm〉 = m |nκm〉 with m = −j, · · · , j (2.2)

and of the relativistic parity operator p̂ = βπ̂ (π̂ is the usual parity operator and the Dirac
matrix β is defined below)

p̂ |nκm〉 = (−)l |nκm〉 (2.3)

The principal quantum number is n = 1, 2, · · · and κ = ∓1,∓2, · · · is the relativistic quantum
number.

κ is given by κ = ±(j + 1
2) for l = j ± 1

2 . Thus

j = |κ| − 1
2 and l =

{
|κ| − 1 for κ < 0

κ for κ > 0
(2.4)

The parity is determined only by the orbital angular momentum l = 0, 1, · · ·.
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spectroscopic label s p p d d f f g g
l 0 1 1 2 2 3 3 4 4
j 1

2
1
2

3
2

3
2

5
2

5
2

7
2

7
2

9
2

κ −1 1 −2 2 −3 3 −4 4 −5
parity e o o e e o o e e

Each of the ≤ 2j+1 orbitals with the same (nκ) but differing m quantum numbers (referred
to as a subshell) are assumed to have the same radial form. Using the convention of
Grant [1] an explicit representation is

〈r|nκm〉 =
1
r




Pnκ(r) χm
κ (θ, φ)

iQnκ(r) χm−κ(θ, φ)


 (2.5)

Here Pnκ(r) and Qnκ(r) are respectively the large and small component radial wavefunc-
tions, and the functions χm

κ (θ, φ) are the spinor spherical harmonics

χm
κ (θ, φ) =

∑

σ=±1
2

〈l, m− σ, 1
2σ|l 1

2jm〉 Y m−σ
l (θ, φ) χσ (2.6)

where 〈l,m−σ, 1
2σ|l 1

2jm〉 is a Clebsch-Gordan coefficient, Y m−σ
l (θ, φ) is a spherical harmonic

and χσ is a spinor basis function.

The spinor spherical harmonics satisfy

ĵ2 χm
κ (θ, φ) = j(j + 1) χm

κ (θ, φ) (2.7)

ĵz χm
κ (θ, φ) = m χm

κ (θ, φ) (2.8)

l̂2 χm
κ (θ, φ) = l(l + 1) χm

κ (θ, φ) (2.9)

ŝ2 χm
κ (θ, φ) = 3

4 χm
κ (θ, φ) (2.10)

π̂ χm
κ (θ, φ) = (−)l χm

κ (θ, φ) (2.11)

The angular momentum algebra is simplest when the orbitals are chosen to form an or-
thonormal set

〈naκama|nbκbmb〉 = δab (2.12)

whence it is necessary to impose

N(ab) =

{
0 when a 6= b but κa = κb

1 when a = b
(2.13)

and

N(ab) =
∫ ∞

0
dr (Pa(r)Pb(r) + Qa(r)Qb(r)) (2.14)

It is often advantageous to allow for a limited amount of nonorthogonality [8,9] but this
will not be discussed here.
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2.2 Configuration state functions

A configuration state function (CSF), |γPJM〉, of an N -electron system is formed by
taking linear combinations of Slater determinants of order N constructed from the Dirac
orbitals so as to obtain normalised

〈γPJM |γPJM〉 = 1 (2.15)

eigenfunctions of the parity operator P̂ and total angular momentum operators Ĵ2 and Ĵz

P̂ |γPJM〉 = P |γPJM〉 (2.16)

Ĵ2 |γPJM〉 = J(J + 1) |γPJM〉 (2.17)

Ĵz |γPJM〉 = M |γPJM〉 with M = −J, · · · , J (2.18)

The label γ represents all information such as orbital occupation numbers, coupling, senior-
ity numbers, etc. , required to define the CSF uniquely.

The standard coupling scheme for a CSF is defined as follows.

• Firstly the electrons are assigned to subshells by specifying the orbital occupation
numbers, q(a) ≤ 2ja + 1. For each subshell a the electrons are jj-coupled to give a
seniority νa and angular momentum JaMa

|(ja)q(a)νaJaMa〉 (2.19)

The following tables list the allowed values of the quantum numbers ν and J for a
given jq.
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j q ν J
1
2 0, 2 0 0

1 1 1
2

3
2 0, 4 0 0

1, 3 1 3
2

2 0 0
2 2

5
2 0, 6 0 0

1, 5 1 5
2

2, 4 0 0
2 2, 4

3 1 5
2

3 3
2 , 9

2
7
2 0, 8 0 0

1, 7 1 7
2

2, 6 0 0
2 2, 4, 6

3, 5 1 7
2

3 3
2 , 5

2 , 9
2 , 11

2 , 15
2

4 0 0
2 2, 4, 6
4 2, 4, 5, 8

j q ν J
9
2 0, 10 0 0

1, 9 1 9
2

2, 8 0 0
2 2, 4, 6, 8

11
2 0, 12 0 0

1, 11 1 11
2

2, 10 0 0
2 2, 4, 6, 8, 10

13
2 0, 14 0 0

1, 13 1 13
2

2, 12 0 0
2 2, 4, 6, 8, 10, 12

15
2 0, 16 0 0

1, 15 1 15
2

2, 14 0 0
2 2, 4, 6, 8, 10, 12, 14

Extra group-theoretic labels may be required to specify the state if the number of
electrons in a subshell having j ≥ 9/2 satisfies 2 < q(a) < 2ja − 1. Because tables of
jj-coupling coefficients of fractional parentage have only been provided for j ≤ 9/2 in
the CFP section of GRASP [10], such configurations are not discussed here.
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• Next subshell angular momentum J1 and J2 are coupled to give an intermediate
momentum X1 which in turn is coupled to J3 to give an X2 and so on until all
subshells have been coupled to give a total angular momentum J

(· · · ((J1J2)X1J3)X2 · · ·)J (2.20)

CSFs formed by redistributing electrons among the subshells and changing the coupling
sequence are orthogonal.

Sometimes it is useful to express CSFs in a coupling scheme other than the standard jj-
coupling, especially if it gives a more clear-cut classification of the atomic states. Whilst
the internal representation of GRASP is always as described above, a facility (an adaption
of the TRANSFORM package of Dyall [11]) is provided to enable the user to express the
reference CSFs and print the final results in nonstandard LS- or jl-coupled bases.

There are two program limitations to note in this context. The first is that only up to four
open (nl)q shells can be handled by the program at present; this can be extended. The
second restriction is imposed by the tabulated jj-LS transformation data which limits the
number of electrons or holes in open shells with l > 2 to not more than 2.

2.3 Atomic state functions

An atomic state function (ASF) is a linear combination of CSFs sharing common values
of P , J and M

|ΓPJM〉 =
nc∑

r=1

crΓ |γrPJM〉 (2.21)

The mixing coefficients crΓ may be combined in a column vector cΓ ≡ {crΓ, r = 1 · · ·nc}
This is the representation of the atomic state |ΓPJM〉 with respect to the CSF basis set
{|γrPJM〉, r = 1 · · ·nc}
The ASF will be chosen to be orthonormal so that

(cΓi)
†cΓj = δij (2.22)

where dagger denotes the Hermitian conjugate.

2.4 The Dirac-Coulomb hamiltonian

All of the dominant interactions in an N -electron atom or ion are included in the Dirac-
Coulomb hamiltonian

ĤDC =
N∑

i=1

Ĥi +
N∑

i=1

N∑

j=i+1

|ri − rj |−1 (2.23)
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The first term on the rhs

Ĥ = c
3∑

i=1

αip̂i + (β − 1)c2 + Vnuc(r) (2.24)

is the one-body contribution for an electron due to its kinetic energy and interaction with
the nucleus — the rest energy c2 has been subtracted out. The nuclear potential Vnuc(r)
takes the Coulomb form −Z/r (where Z is the atomic number of the system) when nuclear
volume effects are neglected.

In the standard representation the 4× 4 Dirac matrices αi, β are in partitioned form

αi =

(
0 σi

σi 0

)
β =

(
1 0
0 −1

)
(2.25)

where i = 1, 2, 3 and σi are the usual 2× 2 Pauli matrices.

The two-body instantaneous Coulomb interactions between the electrons comprise the sec-
ond term.

Higher order (QED) modifications to the hamiltonian are due to the transverse electromag-
netic interaction and the radiative corrections. These are treated by perturbation theory.

The matrix of ĤDC with respect to a basis of CSFs plays a central role in all relativis-
tic atomic structure calculations. Using the CSF expansion of atomic state Γ gives an
approximation to its energy as

EDC
Γ = 〈ΓPJM |ĤDC |ΓPJM〉 (2.26)

= (cDC
Γ )†HDCcDC

Γ

The hamiltonian matrix HDC has the elements

HDC
rs = 〈γrPJM |ĤDC |γsPJM〉 (2.27)

Requiring EDC
Γ to be stationary with respect to variations in the mixing coefficients subject

to eq.(2.22) leads to the eigenvalue problem for the mixing coefficients

(HDC − EDC
Γ I) cDC

Γ = 0 (2.28)

Here I is the nc × nc unit matrix.

2.5 The hamiltonian matrix

The hamiltonian matrix elements can be expressed in terms of angular coefficients and
radial integrals (see Grant [1]).

One-body interactions give rise to the I(ab) integrals

I(ab) = δκaκb

∫ ∞

0
dr

[
c(Qa(r)P ′

b(r)− Pa(r)Q′
b(r)) (2.29)

−2c2 Qa(r)Qb(r) +
cκb

r
(Pa(r)Qb(r) + Qa(r)Pb(r))

Vnuc(r) (Pa(r)Pb(r) + Qa(r)Qb(r))]

11



where f ′ = df/dr.

Two-body interactions yield relativistic Slater integrals

Rk(abcd) =
∫ ∞

0
dr

[
(Pa(r)Pc(r) + Qa(r)Qc(r))

1
r

Y k(bd; r)
]

(2.30)

and the relativistic Hartree Y -functions are defined by

Y k(bd; r) = r

∫ ∞

0
ds Uk(r, s) (Pb(s)Pd(s) + Qb(s)Qd(s)) (2.31)

where

Uk(r, s) =

{
rk/sk+1 if r < s
sk/rk+1 if s < r

(2.32)

A diagonal contribution to the hamiltonian matrix can be written

HDC
rr =

no∑

a=1


qr(a)I(aa) +

no∑

b≥a

k0∑

k=0,2,···
fk

r (ab) F k(ab) (2.33)

+
no∑

b>a

k2∑

k=k1,k1+2,···
gk
r (ab) Gk(ab)




where no is the number of orbitals. In this expression F and G are direct and exchange
radial integrals

F k(ab) = Rk(abab) Gk(ab) = Rk(abba) (2.34)

qr(a) is the occupation number of orbital a in the CSF r. The limits k0, k1 and k2 are

k0 = (2ja − 1) δab (2.35)

k1 =

{
|ja − jb| if κaκb > 0
|ja − jb|+ 1 if κaκb < 0

(2.36)

k2 =

{
ja + jb if ja + jb − k1 is even
ja + jb − 1 otherwise

(2.37)

The angular coefficients fk
r (ab) and gk

r (ab) have the form

f0
r (aa) = 1

2qr(a)(qr(a)− 1) and f0
r (ab) = qr(a)qr(b) (2.38)

For k > 0 and a full subshell ( i.e. , qr(a) = 2ja + 1 or qr(b) = 2jb + 1)

fk
r (ab) = −1

2 [qr(a)C(a, k, a)]2 δab (2.39)

gk
r (ab) = −qr(a)qr(b) [C(a, k, b)]2

C(a, k, b) =

(
ja k jb

1
2 0 −1

2

)
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For k > 0 and both subshells open ( i.e. , qr(a) < 2ja + 1 and qr(b) < 2jb + 1)

fk
r (ab) = V k

rr(abab) (2.40)
gk
r (ab) = V k

rr(abba)

For off-diagonal (r 6= s)

HDC
rs =

∑

abcd

∑

k

V k
rs(abcd) Rk(abcd) +

∑

ab

Trs(ab) I(ab) (2.41)

The configuration coupling coefficients V k
rs(abcd) and Trs(ab) are discussed later.

2.6 Generation of the radial functions

A pair of bound-state radial wavefunctions Pa and Qa (which depend on naκa) for a subshell
a may be obtained, in general, by solving a pair of radial Dirac equations

(
d

dr
+

κa

r

)
Pa(r)−

(
2c− εa

c
+

Ya(r)
cr

)
Qa(r) = −X

(P )
a (r)
r

(2.42)

(
d

dr
− κa

r

)
Qa(r) +

(
−εa

c
+

Ya(r)
cr

)
Pa(r) =

X
(Q)
a (r)
r

with εa > 0 and subject to the boundary conditions

Pa

Qa

}
= 0 when r = 0 (2.43)

Pa

Qa

}
→ 0 when r →∞

P ′
a > 0 when r → 0

and the orthonormalisation condition eq.(2.7). The asymptotic forms of, and the relation
between, the large- and small-component functions near the origin are dependent upon the
behaviour of the potential energy function Ya(r) which dominates the inhomogeneous terms
X

(P )
a (r) and X

(Q)
a (r) in this neighbourhood [3].

These equations along with their boundary conditions define an eigenvalue problem for
the orbitals Pa and Qa and the energies εa (a = 1 · · ·no) when

1. Ya(r) = Yκa(r) i.e. , the orbitals with the same angular quantum number κ are
generated in the same potential
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2. X
(P )
a (r) and X

(Q)
a (r) are both zero.

We treat three simple but important cases

1. When Ya(r) = Z we have the Coulomb central field and the solutions may be obtained
analytically [12]

Pnκ(r)
Qnκ(r)

}
= −SκN

√
1±E (Φ1(ρ)± Φ2(ρ)) ργ e−

ρ
2 (2.44)

where

•
ρ = 2Zr

N (2.45)

•
γ =

√
κ2 − (αZ)2 < |κ| (2.46)

• N is a normalisation constant given by

N =
[ (

Z

2N2(N − κ)

)
Γ(2γ + nr + 1)

nr!

]1
2 1

Γ(2γ + 1)
(2.47)

• Φ1 and Φ2 are polynomials in ρ given by

Φ1(ρ) = −nr M(−nr + 1, 2γ + 1, ρ) (2.48)
Φ2(ρ) = (N − κ) M(−nr, 2γ + 1, ρ)

where M(a, b, ρ) is the confluent hypergeometric function which is defined by the
series

M(a, b, ρ) = 1 +
a

b
ρ +

a(a + 1)
b(b + 1)

ρ2

2!
+ cdots (2.49)

=
∞∑

m=0

(a)m

(b)m

ρm

m!

and

(a)m =
(a + m− 1)!

(a− 1)!
(2.50)

=
Γ(a + m)

Γ(a)

• c2E is the total energy. It is given by the Sommerfeld formula

E = 1− ε

c2
(2.51)

=
1√

1 +
(

αZ
nr+γ

)2

14



• nr is known as the radial quantum number. It is a non-negative integer. This is
necessary to ensure that the confluent hypergeometric functions are polynomials.
The wavefunction will then correspond to bound-states. There is a discrete
spectrum of energies with

γ1 ≤ E < 1 (2.52)

where γ1 =
√

1− (αZ)2 is the energy of the 1s orbital with quantum numbers
nr = 0 and κ = −1.

• N is known as the ‘apparent’ principal quantum number. It is given by

N =
αZ√

1−E2
(2.53)

=
nr + γ

E

=
√

(nr + γ)2 + (αZ)2

Note that N is not an integer. However in the nonrelativistic limit E → 1 and
γ → |κ| so that

N → nr + |κ| = n (2.54)

where integer n can be identified as the principal quantum number. Therefore

N =
√

n2 − 2nr (|κ| − γ) ≤ n (2.55)

• The outside factor −Sκ (where Sκ is the sign of κ) has been included to ensure
that the large radial component of the Dirac wavefunction is positive when r is
small ( i.e. , P ′ > 0 as r → 0). In the nonrelativistic limit this will agree with
the normal convention for hydrogenic bound-states.
Considering only the Φ functions, the sign of the Dirac wavefunction near the
origin is determined by N−κ−nr. When κ < 0 this becomes N−n+2|κ| which
is positive. However when κ > 0 it becomes N − n which is negative.

Screened Coulomb functions are obtained by using Ze = Z−σ in place of the actual
atomic number Z of the system being considered. If different screening numbers
σa are used for different subshells then the condition eq.(2.13) will not be satisfied in
general. In such cases the Gram-Schmidt orthogonalisation procedure

(
Pa

Qa

)
→

(
Pa

Qa

)
−

∑

b<a

δκaκb
N(ab)

(
Pb

Qb

)
(2.56)

followed by normalisation may be used to obtain an orthonormal set of basis functions.

2. In many cases orbitals calculated in a potential based upon the nonrelativistic Thomas-
Fermi theory are better estimates than screened Coulomb functions. This is because
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the Thomas-Fermi potential provides an estimate of the radial variation of screening
of the nuclear field. The Thomas-Fermi potential is given by

Yκa → Y TF (r) = Z∞ − (rVnuc(r) + Z∞) [f(x)]2 (2.57)

where

Z∞ = Z + 1−
no∑

a=1

qav(a) (2.58)

f(x) =
0.60112x2 + 1.81061x + 1

0.04793x5 + 0.21465x4 + 0.77112x3 + 1.39515x2 + 1.81061x + 1
(2.59)

x =

[
(Z − Z∞)

1
3 r

0.8853

]1
2

(2.60)

The average occupation number qav(a) is defined by

qav(a) =
∑nc

r=1 (2Jr + 1) qr(a)∑nc
r=1 (2Jr + 1)

(2.61)

3. Calculations based on density-functional theory may be considered to be the next
level in sophistication, as they include an estimate of certain exchange and correla-
tion effects. Now the potential Yκa(r) includes a term that is also a function of the
spherically-averaged particle density ρ(r)

Yκa(r) → Yκa(r)− Y xc
κa

(ρ; r) (2.62)

where

ρ(r) =
1

4πr2

no∑

a=1

qav(a) (P 2
a (r) + Q2

a(r)) (2.63)

The Slater exchange approximation consists in setting

Y xc
κa

(ρ; r) ≈ Y Slx(ρ; r) = 3
2

(
3
π ρ(r)

) 1
3 (2.64)

In the last case the potential depends on the orbitals through ρ. This makes the differential
equations nonlinear. Such systems are solved by a self-consistent-field (SCF) procedure
such as:

Step 1 The potential Yκa(r) is calculated from an estimated set of radial functions {PbQb}
Step 2 The differential equations are solved using this potential to obtain a new set of

radial functions {P est
b Qest

b }
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Step 3 An improved estimated set of radial functions is obtained from
(

P est
b

Qest
b

)
→ (1− ηb)

(
P new

b

Qnew
b

)
+ ηb

(
P est

b

Qest
b

)
(2.65)

where 0 ≤ ηb < 1 are damping or accelerating factors. If the improved estimated
set agrees to within a specified tolerance with the original estimated set, convergence
has been achieved. If not steps 1–3 are executed again.

When different orbitals with the same angular quantum number are generated in different
potentials, we no longer have an eigenvalue problem: condition eq.(2.13) is enforced by
introducing the inhomogeneous terms

XP
a =

r

cqav(a)

∑

b 6=a

δκaκb
εab Qb(r) (2.66)

XQ
a =

r

cqav(a)

∑

b6=a

δκaκb
εab Pb(r) (2.67)

and the required Lagrange multipliers εab are determined from either of

εabr

qav(a)
=

∫ ∞

0

dr

r
(Ya(r) + rVnuc(r)) (Pa(r)Pb(r) + Qa(r)Qb(r)) − I(ab) (2.68)

εabr

qav(b)
=

∫ ∞

0

dr

r
(Yb(r) + rVnuc(r)) (Pa(r)Pb(r) + Qa(r)Qb(r)) − I(ab) (2.69)

or their difference or sum.

Koopmans has shown [13], quite generally, that Lagrange multipliers need be included only
between pairs of orbitals (a, b) that vary subject to eq.(2.13) if either q̄(a) < 2ja + 1 or
q̄(b) < 2jb + 1. For pairs involving one fixed orbital Lagrange multipliers must always be
included. Pairs in which both orbitals are fixed are assumed orthogonal.

It is now necessary to calculate the inhomogeneous terms also in Step 1 of the SCF procedure
given above.

The most general form of the differential equations arises when such equations are derived
from a variational principle. Consider the energy functional

WDC =
nc∑

r,s=1

wrs HDC
rs +

no∑

a=1

q̄(a) εa N(aa) +
no∑

a=1

no∑

b=a+1

δκaκb εab N(ab) (2.70)

with generalised weights

wrs =
∑nL

i=1 (2Ji + 1) crΓi csΓi∑nL
i=1 (2Ji + 1)

(2.71)
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This is simply equivalent to

WDC =
∑nL

i=1 (2Ji + 1) EDC
Γi∑nL

i=1 (2Ji + 1)
(2.72)

a weighted sum over a certain subset of atomic levels with Lagrange multipliers εa and εab

introduced to enforce the restriction (6). The generalised occupation numbers q̄(a) are
defined in terms of the diagonal coefficients

q̄(a) =
nc∑

r=1

wrr qr(a) (2.73)

The requirement that WDC be stationary with respect to variations in the radial functions
{PaQa} leads to equations of the form (28) with the direct potential Ya(r) given by

Ya(r) = −rVnuc(r)−
∑

k




no∑

b=1

yk(ab) Y k(ab; r)−
no∑

b,d=1

yk(abad) Y k(bd; r)


 (2.74)

yk(ab) =
1 + δab

q̄(a)

nc∑

r=1

wrr fk
r (ab) (2.75)

yk(abad) =
1

q̄(a)

nc∑

r,s=1

wrs V k
rs(abad) (2.76)

and the inhomogeneous terms

2.7 Breit interaction

General open-shell matrix elements take the form

〈TM |H|T ′M ′〉 = δJJ ′δMM ′
∑

abcd

(−)∆
√

Na(Nb − δab)Nc(Nd − δcd)

×
∑

T̄

(Ta{|T̄aja) (Tb{|T̄bjb) (T̄cjc|}T ′c) (T̄djd|}T ′d)

×
∑

k

{
Cd (1 + δabδcd)−1 [ja, jd]

−1
2 Xk(abcd)

× −Ce (1− δab)(1− δcd) [ja, jc]−
1
2 Xk(abdc)

}

For the transverse Breit interaction

Xk(abcd) = (−)k 〈ja||C(k)||jc〉 〈jb||C(k)||jd〉
× ∆(jajck)∆(jbjdk)
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×




k+1∑

ν=k−1

Π(κaκcν)Π(κbκdν)
4∑

µ=1

rνk
µ (abcd)Rν

µ(abcd)

+Π(κaκc, k − 1)Π(κbκd, k + 1)
8∑

µ=1

sk
µ(abcd) Sk

µ(abcd)





Now define the following radial integrals

Rk[ac|bd] =
∫ ∞

0

∫ ∞

0
ρac(r) 1

2{Vk(r, s; ωac) + Vk(r, s;ωbd)} ρbd(s) dr ds

and

Sk[ac|bd] =
∫ ∞

0

∫ ∞

0
ρac(r) 1

2{Wk(r, s; ωac) + Wk(r, s; ωbd)} ρbd(s) dr ds

where

ρac(r) = Pa(r) Qc(r)
Vk(r, s;ω) = −(2k + 1)ω jk(wr<) nk(wr>)

Wk(r, s;ω) =





(2k + 1)ω jk−1(wr) nk+1(ws) + (2k+1
ω )2 rk−1

sk+2 when r < s

(2k + 1)ω jk+1(ws) nk−1(wr) when r > s

The summation label µ refers to permutations of the orbital labels

Rk
µ(abcd) = Rk[ac|bd] when µ = 1

Rk[ca|db] when µ = 2

Rk[ac|db] when µ = 3

Rk[ca|bd] when µ = 4

and

Sk
µ(abcd) = Sk[ac|bd] when µ = 1

Sk[bd|ac] when µ = 2

Sk[ca|db] when µ = 3

Sk[db|ca] when µ = 4

Sk[ac|db] when µ = 5

Sk[db|ac] when µ = 6

Sk[ca|bd] when µ = 7

Sk[bd|ca] when µ = 8

The coefficients rνk
µ (abcd) are given by
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ν = k − 1 k k + 1
µ = 1 A(K + k)(K ′ + k) A A(K − k − 1)(K ′ − k − 1)

2 A(K − k)(K ′ − k) A A(K + k + 1)(K ′ + k + 1)
3 A(K + k)(K ′ − k) A A(K − k − 1)(K ′ + k + 1)
4 A(K − k)(K ′ + k) A A(K + k + 1)(K ′ − k − 1)

The coefficients sk
µ(abcd) are given by

µ = 1 B(K + k)(K ′ − k − 1)
2 B(K ′ + k)(K − k − 1)
3 B(K − k)(K ′ + k + 1)
4 B(K ′ − k)(K + k + 1)
5 B(K + k)(K ′ + k + 1)
6 B(K ′ − k)(K − k − 1)
7 B(K − k)(K ′ − k − 1)
8 B(K ′ + k)(K + k + 1)

In these formulae

K = κc − κa

K ′ = κd − κb

A =





(k + 1)/k(2k − 1)(2k + 1) when ν = k − 1

−(κa + κc)(κb + κd)/k(k + 1) when ν = k

k/(k + 1)(2k + 1)(2k + 3) when ν = k + 1

B = 1/(2k + 1)2
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Chapter 3

GRASP2 input
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3.1 GRASP2 input data summary

•: Compulsory at its level
◦: Optional at its level

1. • TIME Card

2. ◦ Problem Specification Card Group:

(a) • Title Card

(b) • CSF Manifold Specification and Print Control Card Group:

i. • Convention/Dimension/Transformation/Print Control Card
ii. • Configuration Specification Card(s)
iii. • Coupling Specification and Angular Module Print Control Card Group:

A. • ANG Card
B. • Coupling Information Card(s)

(c) ◦ MCP Invocation and Unit Specification Card

(d) ◦ MCDF Card Group:

i. • MCDF Invocation and Option Specification Card
ii. • MCDF Unit Specification Card
iii. • Nuclear Charge/Mass Card
iv. ◦ NUCLEUS Card
v. ◦ FIX Card
vi. ◦ LOAD Card
vii. ◦ ORBOUT Card
viii. ◦ SCF Card
ix. ◦ GRID Card
x. ◦ RLDA Card
xi. ◦ PRINT Card (absent here if used in (f) iii.)
xii. ◦ SCREEN Card
xiii. ◦ METHOD Card
xiv. ◦ CDAMP Card
xv. ◦ ODAMP Card
xvi. ◦ CPOLPOTL Card Group:

A. • CPOLPOTL Invocation Card
B. • Core-Polarisation Potential Data Cards

xvii. ◦ NOINVERT Card
xviii. ◦ THRESHLD Card
xix. • Calculation Type Card

(e) ◦ MCBP Invocation and Unit Specification Card
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(f) ◦ BENA Card Group:

i. • BENA Invocation and Option Specification Card
ii. • BENA Unit Specification Card
iii. ◦ PRINT Card (absent here if used in (d) xi.)
iv. ◦ LOW1 Card

(g) ◦ MCT Invocation and Unit Specification Card

(h) ◦ OSCL Card Group:

i. • OSCL Invocation and Option Specification Card
ii. • OSCL Unit Specification Card
iii. ◦ LEV Card
iv. ◦ CUT Card
v. ◦ LOW2 Card

(i) • END Card

3.2 Card structure summary

3.2.1 Notation

c: Character string
i: Integer constant
n: Numerical constant, of type i, or floating or fixed-point
s: Orbital specification: form is ic with no space between the i and the c

i is the principal quantum number and must be a positive integer, and c
must be one of the following symmetries:

Symmetry S P- P D- D F- F G- G H- H
l 0 1 1 2 2 3 3 4 4 5 5
j 1/2 1/2 3/2 3/2 5/2 5/2 7/2 7/2 9/2 9/2 11/2
Parity e o o e e o o e e o o

Symmetry I- I K- K L- L M- M N- N
l 6 6 7 7 8 8 9 9 10 10
j 11/2 13/2 13/2 15/2 15/2 17/2 17/2 19/2 19/2 21/2
Parity e e o o e e o o e e

Symmetries involving the - sign cannot be used to specify nonrelativistic (nl) orbitals.
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3.2.2 Facilities in CARDIN

i∗n ≡ n . . . n︸ ︷︷ ︸
i times

i∗( . . . ) ≡ ( . . . ) . . . ( . . . )︸ ︷︷ ︸
i times

n1/n2 ≡ n1 ÷ n2

n1−n2 ≡
{

n1, n1 + 1, . . . , n2 if n1 < n2

n1, n1 − 1, . . . , n2 if n1 > n2

The - must be isolated by spaces when used to specify a range. An isolated C implies that
a continuation line follows; the card may be spread over any number of lines.

3.2.3 TIME Card

Format: TIME n

n: CPU seconds available for run.

3.2.4 Title Card

Format: c

c: 0–72-character string. This string is written as an identifier in all GRASP2 files.

3.2.5 Convention/Dimension/Transformation/Print Control Card

Format 1: {2 or 3}i

i1: Number of CSF manifolds (nc).

i2: Number of orbitals (nw).

i3: Convention/transformation/print-control index:
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0: (Default) ‘relativistic’ orbitals (maximum occupation (2j + 1)).

1: ‘Nonrelativistic’ orbitals (maximum occupation 2(2l + 1)).

2: As for 1; CSF manifolds are defined in a new coupling scheme, the transformation
matrix between the default and the new CSF manifold is calculated and printed,
and the eigenvectors are printed in the new basis

3: As for 2, but the transformation matrix is not printed

or

Format 2: {3}i c’s

i1: Number of configurations (nc).

i2: Number of orbitals (nw).

i3: Unit number for file to dump transformation information and matrix. Set to 0 if not
used.

c:

NOHEAD: Do not print CSF manifold headings.

HEAD: Print CSF manifold headings (default).

OLDONLY: Print standard jj-coupled CSF manifold data and not those in other basis.

NEWONLY: Print CSF manifold data only in new basis.

CSFONLY: Print only the CSF manifold data in both schemes: do not print the trans-
formation coefficients (default).

NOCOEFF: Do not print transformation coefficients.

COEFF: Print transformation coefficients.

ALL: Print CSF manifold data in both bases and transformation coefficients.

NOPRINT: Do not print anything.

NOFILE: Do not dump to unit i3 (default if i3 = 0).

FILE: Dump to unit i3 (default if i3 6= 0).

3.2.6 Configuration Specification Card

There should be nw such cards.

1. Format: s

Orbital s is full in all CSF manifolds.
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2. Format: s i

Orbital s has occupation i in all CSF manifolds.

3. Format: s {nc}i
ik: Occupation number of orbital s in CSF manifold k.

3.2.7 ANG Card

Format: ANG {0–7}i

1 : Print out all angular coefficients calculated: Trs(ab), V k
rs(abcd) in MCP, V kτ

rs (abcd) in
MCBP, dπk

rs (ab) in MCT.

2 : Debug output from routines RKCO, etc. .

3 : Debug output from routines in NJGRAF.

4 : Debug output from VIJOUT.

5 : Debug output from TMSOUT.

6 : Debug output from TNSRJJ.

7 : Suppress call to CFOUT.

3.2.8 Coupling Information Card

Format 1: i n’s

This format must be used if Format 1 is selected for the Convention/Dimension/Transformation/Print
Control Card.

i: Sequence number (going from left to right on the Configuration Specification Card(s))
of the configuration for which coupling information is being provided.

n: J (and v when required) and X sequences required to fully specify the standard coupling
scheme. If there are no open subshells, these cards must be absent. If there is a single
open subshell, only its J value must be specified. If there is more than one open
subshell the appropriate set of J ’s and X’s must be specified.

26



The following tables help in deciding the entries for format 1 of the coupling information
cards.

A subshell is defined by the angular momentum, j, of the orbitals that constitute it, and
its occupation number, 0 ≤ q ≤ 2j + 1. The q orbitals are jj-coupled to give total angular
momentum quantum numbers J , M , and seniority v:

|(j)q v J M〉 (3.1)

GRASP2 is limited (by data set in BLOCK DATA TERMS) to 1
2 ≤ j ≤ 15

2 , and further, 2 ≤ q ≤
2j − 1 for j ≥ 9

2 . If using Format 1 for the coupling information cards, seniority, v, need be
specified if and only if j = 7

2 , q = 4, J = 2, 4.

j q v J
1
2 0, 2 0 0

1 1 1
2

3
2 0, 4 0 0

1, 3 1 3
2

2 0 0
2 2

5
2 0, 6 0 0

1, 5 1 5
2

2, 4 0 0
2 2, 4

3 1 5
2

3 3
2 , 9

2
7
2 0, 8 0 0

1, 7 1 7
2

2, 6 0 0
2 2, 4, 6

3, 5 1 7
2

3 3
2 , 5

2 , 9
2 , 11

2 , 15
2

4 0 0
2 2, 4, 6
4 2, 4, 5, 8
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j q v J
9
2 0, 10 0 0

1, 9 1 9
2

2, 8 0 0
2 2, 4, 6, 8

11
2 0, 12 0 0

1, 11 1 11
2

2, 10 0 0
2 2, 4, 6, 8, 10

13
2 0, 14 0 0

1, 13 1 13
2

2, 12 0 0
2 2, 4, 6, 8, 10, 12

15
2 0, 16 0 0

1, 15 1 15
2

2, 14 0 0
2 2, 4, 6, 8, 10, 12, 14

or

Format 2: n {0–2}i l or c︸ ︷︷ ︸
optional

{0–nopen}{i or s}

This format must be used if Format 2 is selected for the Convention/Dimension/Transformation/Print
Control Card.

There must be nc Coupling Information Cards.

n: Total angular momentum quantum number, J (integer or half-integer), for configuration;
if this is a negative number CSF manifolds with all possible J will be included.

i1: Number of open subshells (integer) to be transformed from LS- to LSJ-coupling; If this
is less than nopen, the outermost i2 subshells are chosen.

i2: Number of open subshells (integer) to be transformed from LSJ- to LLSS-coupling;
this must be ≤ i1; if < i1, the outermost i2 subshells are chosen.

l or c: TRUE, T, FALSE, F, or J-L to indicate whether jl-coupling is to be used on the
outermost open subshell.

{0–nopen}i: List of subshells in order of coupling. Subshells may be defined by the open
subshell index number, the orbital label, or the subshell index number. Parentheses
may be used to indicate that a pair of subshells is to be coupled together before being
coupled to the previous resultant angular momentum. The list of subshells should
always be given with the minimum number of parentheses. The proper order of the
subshells is always maintained when the coupling tree is set up: subshells with lower
index are always placed to the left of those with higher index numbers.
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3.2.9 MCP Invocation and Unit Specification Card

Format: MCP {2–3}i

i1: Unit number of the UNSORTED MCP OUTPUT FILE. This stores the CSF-manifold-
based list of Trs(ab) and V k

rs(abcd) coefficients.

i2: Unit number of the SORTED MCP OUTPUT FILE. This stores the integral-based list
of Trs(ab) and V k

rs(abcd) coefficients.

i3: Unit number of the UNSORTED MCP INPUT FILE. This is an UNSORTED MCP
OUTPUT FILE from an incomplete run.

If i1 = i3 this is the UNSORTED MCP INPUT/OUTPUT FILE.

3.2.10 MCDF Invocation and Option Specification Card

Format: MCDF {0–33}i
i:

1 : Print the radial grid and associated arrays.

2 : Print Vnuc(r).

3 : Print V TF(r).

4 : Print the orbital wavefunctions at the end of each SCF iteration.†

5 : Print the coefficients of the direct and exchange potentials each time they are calcu-
lated.

6 : Print the direct and exchange potentials each time they are calculated.†

7 : Print iteration information in routine SOLVE.

8 : Print orbital wavefunctions on each iteration in routine SOLVE.†

9 : Print HDC each time it is calculated.†

10 : Print out EDC
Γ and cDC

Γ each time they are calculated.†

11 : Print the Rk(abcd) each time they are calculated.†

12 : Print the I(ab) each time they are calculated.†

13 : Print the Y k(ab; r) each time they are calculated.†
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14 : Print nonzero coefficients in routines FCO and GCO.

15 : Print the composition of the direct and exchange potentials.†

16 : Print a performance message in routine INTRPQ.

17 : Print a performance message in routine DPBDT (Aitken version only).

18 : Print a performance message in routine QUAD.

19 : Print a performance message in routine TAIL.

22 : Append READ ORBITALS file to WRITE ORBITALS file before writing out orbitals.

24 : Print orbitals at convergence.

25 : Enforce weak orthogonality (Schmidt orthogonalise orbitals only at the end of an SCF
cycle).

26 : Omit all Lagrange multipliers.

27 : Perform rotation analysis.

28 : Enforce strong orthogonality (Schmidt orthogonalise an orbital as soon as it is calcu-
lated).

29 : Compute isotope-shift parameters ∂EΓ/∂c and ∂EΓ/∂a.

31 : Suppress the printout of jj-coupled eigenvectors.

32 : Suppress the printout of weights in the jj-coupled basis.

33 : Suppress the printout of the recoupled eigenvectors.

34 : Suppress the printout of weights in the recoupled basis.

35 : Suppress the printout of nonrelativistic configuration weights.

36 : Suppress printout of interlevel separations.

37 : Suppress printout of level energies relative to lowest level.

† Warning : This can produce a very large printout.
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3.2.11 MCDF Unit Specification Card

Format: {3–5}i

i1: Unit number of the SORTED MCP (OUTPUT) FILE. See the MCP Invocation and
Unit Specification Card.

i2: Unit number of the MCDF READ FILE; set to 0 if this does not exist. This is an
MCDF DUMP FILE from an incomplete run.

i3: Unit number of the MCDF DUMP FILE. This file stores all information required to
restart the SCF iterations if convergence has not been attained.

i4: Unit number of the ORBOUT READ FILE; this must be nonzero if a 1 appears on the
LOAD Card.

i5: Unit number of the ORBOUT DUMP FILE; this must be nonzero if the ORBOUT Card
is used. Orbital parameters, orbitals, and the radial grid are written to the ORBOUT
DUMP FILE at convergence.

If i2 = i3 this is the MCDF READ/DUMP FILE.

If i4 = i5 this is the ORBOUT READ/DUMP FILE.

3.2.12 Nuclear Charge/Mass Card

Format: {1 or 2}n

n1: Atomic number Z.

n2: Nuclear mass Mnuc in amu; if nonzero, the default nucleus type is FERMI; if omitted,
Mnuc = ∞ and the nucleus type is POINT.

3.2.13 NUCLEUS Card

Format 1: NUCLEUS POINT

or

Format 2: NUCLEUS FERMI {0 – 2}n
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n1: Root mean square radius, 〈r2〉1/2, of the Fermi nuclear charge distribution in fm; the
default is 0.836M

1/3
nuc + 0.570. The mean square radius is related to the parameters c

and a through 〈r2〉 = (3/5) c2 + (7/5)π2a2.

n2: Skin thickness, t, of the Fermi charge distribution in fm; the default is 2.30 fm. The
skin thickness is related to the parameter a through t = a · 4 ln 3.

See the Nuclear Charge/Mass Card for the default nucleus type.

3.2.14 FIX Card

Format: FIX {1–nw − 1}i

i: Sequence number of orbital that must be held fixed (frozen). This card should not be
used if all orbitals are to be held fixed; use the CI Calculation Type Card instead.

The default is to hold no orbitals fixed.

3.2.15 LOAD Card

Format: LOAD {nw}i
ia:

0: Read orbital a from the MCDF READ (or READ/DUMP) FILE.

1: Read orbital a from the ORBOUT READ (or READ/DUMP) FILE.

2: Generate orbital a using a nonrelativistic Thomas-Fermi potential; this is the default if
the LOAD Card is not used.

3: use a screened Coulomb function for orbital a.

Screening parameters can be set with the SCREEN Card if the default (Fischer) estimation
procedure is not chosen.
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3.2.16 ORBOUT Card

Format: ORBOUT {0–nw}i

i: The sequence number of an orbital to be appended to the ORBOUT DUMP (or READ/DUMP)
FILE. See the MCDF Invocation and Option Specification Card. If omitted, all or-
bitals are appended to this file. Orbitals that are held fixed (see the FIX Card) cannot
be written out. Option 22 on the MCDF Invocation and Option Specification Card
affects the structure of the ORBOUT DUMP (or READ/DUMP) FILE.

The default is to append no orbitals to the ORBOUT DUMP (or READ/DUMP) FILE.

3.2.17 SCF Card

Format: SCF {1–5}{c n}

c: ACCY, CON, NSCF, NSIC, or NSOLV.

n: Accuracy criterion (> 0) if this follows ACCY, default is h6; factor by which the speed of
light is to be multiplied (> 0) if this follows CON: the nonrelativistic limit can usually
be obtained with this set to 103; number of SCF iterations (≥ 1) if this follows NSCF;
number of improvements after the sweep through all functions in each SCF iteration
if this follows NSIC; maximum number of iterations in routine SOLVE if this follows
NSOLV: default is thrice the principal quantum number for a given orbital.

3.2.18 GRID Card

Format: GRID {1–4}{c n}
The radial grid has the form:

rk = r0(e(k−1)h − 1) where k = 1, . . . , np (3.2)

if h′ is 0, and the form

ln(rk/r0 + 1) + (h/h′)rk = (k − 1)h where k = 1, . . . , np (3.3)

otherwise.

c: RNT, H, HP, or N.
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n: If preceded by RNT, this is the grid parameter r0(> 0); if preceded by H this is the grid
parameter h(> 0); if preceded by HP, this is the grid parameter h′(> 0); if preceded
by N this is the grid parameter np.

If a Fermi nucleus is used, the defaults are r0 = 2 × 10−6, h = 0.05, np = NP; the defaults
for the point nucleus case are r0 = e−65/16/Z, h = 0.0625, np = 220, if h′ = 0, and np = NP
otherwise. The default for h′ in either case is 0.

3.2.19 RLDA Card

Format: RLDA {i n}

i:

0 for nonrelativistic statistical exchange only;

1 for relativistic statistical exchange only;

2 (default) for relativistic statistical exchange and correlation.

n: Exchange parameter: e.g., 1 (default) for Kohn-Sham exchange; 3/2 for Slater exchange.

The default is to use the usual direct and exchange potentials.

3.2.20 PRINT Card

Format: PRINT {0–nc}i

ik: Print information related to this level. The levels are ordered by increasing energy.

If no levels are specified, information is printed for all nc levels.

The default is printing for all nc levels for AL or EAL calculations, i for OL and i(j) with
j = 1, . . . , nL for EOL calculations.
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3.2.21 SCREEN Card

Format 1: SCREEN {1–nw}{i n}
or

Format 2: SCREEN i

i: Sequence number of an orbital. This is absent in Format 2, where n applies to all orbitals.

n: Screening number σi. Fischer has defined the default procedure for calculating this
quantity.

3.2.22 METHOD Card

Format 1: METHOD {1–nw}{i1 i2}
or

Format 2: METHOD i2

i1: Orbital sequence number. This is absent in Format 2, where i2 applies to all orbitals.

i2: 1, 2, 3 or 4: methods of solving the differential equations as specified by Fischer (1986).

Method 1 is the default method. This is suitable for cases where the Dirac equations are
inhomogeneous and where self-consistency is ≈ 10−4 or worse. Homogeneous equations can
be solved only with method 2, and the program will detect this condition automatically.
In many cases, once self-consistency is better than ≈ 10−4 this method will lead to the
quickest convergence.

Method 3 is the same as method 1 except that node counting is not enforced. The user
must therefore determine from the output listing (under the heading NNP) that the correct
number of nodes, n− l − 1, has been attained.

Method 4 is the same as method 2 except that node-counting is again not enforced.

3.2.23 CDAMP Card

Format 1: CDAMP {1–nL}{i n}
or

Format 2: CDAMP n

35



i: Level sequence number in order of increasing energy. This is absent in Format 2, where
n applies to all levels.

n: Damping factor, ξi (0 < ξi < 1), for level i.

This card has no effect on AL or EAL calculations. For OL and EOL calculations, the default
is ξi = 0 for all j = 1, . . . , nL levels i(j).

3.2.24 ODAMP Card

Format 1: ODAMP {1–nw}{i n}
or

Format 2: ODAMP n

i: Orbital sequence number as defined by the Configuration Specification Cards. This is
absent in Format 2, where n applies to all orbitals.

n: The damping factor, η, (-1 < η < 1, but η 6= 0) for this orbital is |n|. The negative sign
indicates a constant damping factor. Otherwise the program adjusts the damping as
the calculation progresses. The default is η = 0.

3.2.25 CPOLPOTL Invocation Card

Format: CPOLPOTL i

i: Number of orbitals that suffer a core-polarisation potential. The default is 0.

3.2.26 Core-Polarisation Potential Data Card

Format: s {2 or 4}n

n1: Dipole polarisability, αd, of core of orbital s.

n2: Cutoff radius, rc, of polarisation potential for this orbital.
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n3: Dynamical parameter, β, for this orbital. The default value is 0.

n4: Quadrupole polarisability, αq, of this orbital’s core. The default value is 0.

3.2.27 NOINVERT Card

Format: NOINVERT {0 – nw}i

i: Sequence number of orbital not subject to the positive-slope-at-the-origin condition if
method 3 or 4 has been selected. If omitted, all orbitals are selected. This card
should not be used if methods 3 or 4 are not employed.

The default is that all orbitals are subject to the positive-slope-at-the-origin condition.

3.2.28 THRESHLD Card

Format: THRESHLD n

n: Oscillations in a large-component function, Pnaκa , will be ignored if they have amplitudes
less than n times the maximum amplitude of this function. The default value of n is
0.05.

3.2.29 Calculation Type Card

1. Format: AL

Average Level calculation: MCDF procedure with

drs = δrs
wr∑nc
t=1 wt

(3.4)

with wt = 2Jt + 1.

2. Format: CI

Configuration Interaction calculation: no MCDF procedure.
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3. Format: OL i

Optimal Level calculation: MCDF procedure. The atomic levels are arranged in order
of increasing energy after each diagonalisation of HDC. With nL = 1, only level i in
this sequence contributes to the variational functional:

drs = crΓi csΓi (3.5)

4. EAL

Extended Average Level calculation: MCDF procedure.

(a) Format 1: EAL 1

drs = δrs/nc (3.6)

(b) Format 2: EAL {nc}n

drs = δrs
nr∑nc
t=1 nt

(3.7)

5. EOL

(a) Format 1: EOL i1 {i1}i
(b) Format 2: EOL i1 {i1}i 1
(c) Format 3: EOL i1 {i1}{i n}

Extended Optimal Level calculation: MCDF procedure. The atomic levels are ar-
ranged in order of increasing energy after each diagonalisation of HDC. Only nL < nc

levels i(j), j = 1, . . . , nL in this sequence contribute to the variational functional:

drs =

∑nL
j=1 wi(j) crΓi(j)

csΓi(j)∑nL
j=1 wi(j)

(3.8)

i1: Number of levels, nL, to be optimised upon.
i: Level contributing to the variational functional.
n: Weight wi of level i. If Format 1 is used, the weight of level i is wi = 2Ji + 1; if
Format 2 is used, wi = 1.

3.2.30 MCBP Invocation and Unit Specification Card

Format: MCBP {1 or 2}i

i1: Unit number of the MCBP OUTPUT FILE. This file stores the V kτ
rs (abcd) coefficients.
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i2: Unit number of the MCBP INPUT FILE. This is an MCBP OUTPUT FILE from an
incomplete run.

When i1 = i2 the file is the MCBP INPUT/OUTPUT FILE.

3.2.31 BENA Invocation and Option Specification Card

Format: BENA {0–25}i
The default is to print eigenvalues and only the jj-basis eigenvectors. The following options
over-ride the default.

1 : Diagonalise HTransv on its own, then HTransv + HQED. [Diagonalise the transverse
interaction matrix to obtain the new Coulomb+transverse ASF basis. Rediagonalise
the hamiltonian after computing the QED corrections.]

2 : Diagonalise HTransv on its own, then estimate QED contributions as the diagonal
elements of HQED. [Diagonalise the transverse interaction matrix to obtain the new
Coulomb+transverse ASF basis. Do not rediagonalise the hamiltonian after comput-
ing the QED corrections; note that only the diagonal contributions are included if this
is the case.]

3 : Diagonalise HTransv on its own; do not estimate QED contributions.

5 : Print out contributions of HTransv
rs to eigenvalues.

7 : Make use of user-supplied routine VACUSR for evaluating V VP(r).

8 : Use point nucleus V VP(r).

9 : Use second-order V VP(r) only.

11 : Give information on evaluation of φk(ωr) and ψk(ωr) in routine BESSEL.

12 : Print HTransv before transformation to eigenvector basis of HDC.

13 : Print restart information.

14 : Print out each contribution to HTransv
rs .

15 : Print vacuum polarisation integrals and self-energy for each orbital; print QED con-
tributions to CSF manifold.

16 : Print matrix before adding diagonal terms and subtracting average energy from diag-
onal. [Print out H(QED) in the Breit basis.]

18 : Print matrix before diagonalising.
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19 : Print V VP(r).

21 : Print eigenvectors in new basis. [Transform eigenvectors to LS-basis and print.]

22 : Do not print eigenvectors in standard basis. [Do not print eigenvectors in jj-basis.]

23 : Do not print eigenvectors in any basis. [Do not print any eigenvectors.]

24 : Print eigenvectors in cDC basis.

25 : Do not print eigenvalues.

26 : Print neither eigenvalues nor eigenvectors.

27 : Print summary in Ryd.

28 : Print summary in cm−1.

29 : Print summary in eV.

30 : Do not print final summary. [Do not call routine SUMMRY to obtain final summary
of contributions to energy levels.]

3.2.32 BENA Unit Specification Card

Format: {3–5}i

i1: Unit number of the SORTED MCP (OUTPUT) FILE. See the MCP Invocation and
Unit Specification CARD.

i2: Unit number of the MCDF (DUMP or READ/DUMP) FILE from a converged run. See
the MCDF Unit Specification Card.

i3: Unit number of the MCBP (OUTPUT or INPUT/OUTPUT) FILE. See the MCBP
Invocation and Unit Specification Card.

i4: Unit number of the BENA OUTPUT FILE. This file stores the Skτ (abcd) integrals.

i5: Unit number of the BENA INPUT FILE. This is a BENA OUTPUT FILE from an
incomplete run.

If i4 = i5 this is the BENA INPUT/OUTPUT FILE.
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3.2.33 PRINT Card

Format: PRINT {0–nc}i

ik: Print information related to this level. The levels are ordered by increasing energy.

If no levels are specified, information is printed for all nc levels.

The default is printing for all nc levels for AL or EAL calculations, i for OL and i(j) with
j = 1, . . . , nL for EOL calculations.

3.2.34 LOW1 Card

Format: LOW1 n

n: Factor reducing the transverse photon frequency to calculate the ω → 0 limit of the
transverse Breit interaction. n = 1E-3 is recommended. The default value is 1.

3.2.35 MCT Invocation and Unit Specification Card

Format 1: MCT i1 i2 i3 i’s

or

Format 2: MCT i1 i2 i3 0 i’s

i1: Unit number of the UNSORTED MCT OUTPUT FILE. This file stores the CSF-
manifold-based list of dπk

rs (ab) coefficients.

i2: Unit number of the SORTED MCT OUTPUT FILE. This file stores the integral-based
list of dπk

rs (ab) coefficients.

i3: Unit number of the UNSORTED MCT INPUT FILE. This is an UNSORTED MCT
OUTPUT FILE from an incomplete run. Set to 0 if not present.

If i1 = i3 this is the UNSORTED MCT INPUT/OUTPUT FILE.

is: Integers specifying the ranks, k, and parities, π, of the operators. A positive (negative)
integer implies even (odd) parity if Format 1 is used. If Format 2 is used, the i ≥ 0
specify the ranks, k, of the operators and both parities are implied.
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3.2.36 OSCL Invocation and Option Specification Card

Format: OSCL {0–17}i
i:

1 : Use EDC
Γ , cDC

Γ .

2 : Use EDC+Transv+QED
Γ , cDC+Transv+QED

Γ .

3 : Both 1 and 2.

4 : Use EDC+Transv
Γ , cDC+Transv

Γ , then use EDC+Transv+QED
Γ , cDC+Transv+QED

Γ .

5 : Print transition probabilities in au.

6 : Sort transitions in ascending order of energy.

7 : Print transition wavelengths in Å.

8 : Print transition energies in cm−1.

9 : Print transition energies in eV.

10 : Print transition frequencies in Hz.

12 : Print M̄ e,l,m
ab .

13 : Print the integrand of M̄ l
ab.

14 : Print I±L , JL.

15 : Print the integrands of I±L , JL.

16 : Print jL(ωr/c) as evaluated in routine BESSJ.

18 : Print out dπk
rs (ab) after they are read in.

19 : Write out EΓ, cΓ.

3.2.37 OSCL Unit Specification Card

Format: {2–3}i

i1: Unit number of the MCDF (DUMP or READ/DUMP) FILE from a converged run. See
the MCDF Unit Specification Card.
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i2: Unit number of the SORTED MCT (OUTPUT) FILE. See the MCT Invocation and
Unit Specification Card.

i3: Unit number of the OSCL OUTPUT FILE. This file stores transition data.

3.2.38 LEV Card

Format: LEV {2–nc}i

ik: Sequence number (in ascending order of energy) of levels between which transition data
is to be printed (it is calculated for all levels).

The default is all nc levels for AL or EAL calculations, none for OL calculations, and all
j = 1, . . . , nL levels i(j) for EOL calculations.

3.2.39 CUT Card

Format: CUT n

n: Smallest transition rate (in s−1) to be printed. The default value is 0.

3.2.40 LOW2 Card

Format: LOW2 n

n: Factor reducing the photon frequency to calculate the ω → 0 limits of the transition
matrix elements. n = 1E-3 is recommended. The default value is 1.

3.2.41 END Card

Format: END
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3.3 Dimensions

The dimensions are set by the file grasp2.inc.

Numerical Plants: These are assigned numerical values with equivalences of the type KEY
= 73. All numerical plants must be assigned integer values ≥ 1 except as specified below.

C3 The maximum number of items in a single input card (including continuation lines
but not Cs) to CARDIN: max (2 · NW + 1, 2 · NC + 2).

KEY INT(2**((IL-1)/5)), where IL is the length of the integer in bits. (Usually 73.)
LL The maximum number of integral labels allowed.
LM The maximum number of Lagrange multipliers: LM ≤ (NW · (NW− 1))/2.
LV The maximum number of pairs of levels between which transitions are to be calculated:

LV = (NC · (NC− 1))/2.
MC The number of nonrelativistic configurations.
MW The number of nonrelativistic (nl) orbitals.
NB The total number of Skτ (abcd) integrals.
NC The number of relativistic CSF manifolds.
ND The maximum value of N z

a .
NJ The maximum number of orbital j values allowed.
NLP The maximum number of lines on a page of printout; default is 70.
NM The total number of V k

rs(abcd) and Trs(ab) coefficients.
NP The number of points in the radial grid: NP ≥ 220.
N1 N1 = NP + 10.
NRP The maximum number of rank/parity combinations for one-electron operators.
NS The maximum number of dπk

rs (ab) coefficients of a given rank and parity.
NT The maximum number of dπk

rs (ab) coefficients.
NV The number of valence orbitals (those subject to a core-polarisation potential).
NW The number of relativistic (nlj) orbitals. NW ≤ KEY.
NX The maximum value of Nx

a .
NY The maximum value of Ny

a .
OL The maximum value of nL: OL < NC.
OP The maximum number of open nonrelativistic subshells: this must be 4 unless

the user has modified GRASP2 according to the comment cards in routine DATNR.
2OP 2OP = 2 · OP.
PR PR = (NC · (NC + 1))/2 if option 27 on the MCDF Invocation and Option Specification

Card is to be used, 1 otherwise.
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Chapter 4

GRASP2 routines
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The routines in GRASP2 are described in alphabetical order. Routines that are part of the
NJGRAF package are separate.

Routine GRASP

This is the entry point into the package. After performing some setup, it directs control to
each section in turn. After processing one problem it loops back indefinitely to start a new
problem.

Input: IRD=5, FILE=’GRASP2.INP’, STATUS=’OLD’
Output: IPD=6, FILE=’GRASP2.OUT’, STATUS=’UNKNOWN’

Routine(s) called: BENA, CARDIN, DATAIN, (ERRSET), FACTT, MCBP, MCDF, MCP,
MCT, TIMER, OSCL.

TIME card — COMPULSORY

Format: string of 1 to 4 characters, 1 integer

Label ”TIME” (minimal abbreviation ”T”) (compulsory): the maximum CPU time for this
run follows on this card.

1 integer (COMPULSORY): CPU time in seconds for this problem

Routine ARCTAN—function
(ARG1,ARG2)

ARCTAN = tan−1(ARG1/ARG2) with 0 ≤ ARCTAN < 2π

Routine AVCONF
(IPD,JCFN,NST,NCSF,IPAR)

Routine BENA
(IPD,IMCP,IDUMP,IMCBP,ISTOUT,ISTIN)

This routine controls the main sequence of routine calls for the calculation of the transverse
Breit and QED corrections to the MCDF energy levels.

Routine(s) called: BREMAT, CHEKFL, CLOSFL, ENGOUT, LOAD, MATOUT, NEW-
BAS, OPENFL, ORDER, QED, SUMMRY.

Routine BESSEL
(IPD,IA,IB,IK,IW,K)

This routine evaluates the functions

BESSJ =
(2k + 1)!!
(ωab r)k

jk(ωab r)− 1 (4.1)

= φk(ωab r)− 1

and

BESSN = −(ωab r)k+1

(2k − 1)!!
nk(ωab r)− 1 (4.2)

= ψk(ωab r)− 1
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where jk and nk are spherical Bessel functions, and

ωab =
|Ea − Eb|

c
(4.3)

where Ei is the eigenvalue for orbital i.

The routine uses equations from Abramowitz and Stegun (1965 [1]) to evaluate the functions.
Devices are used to reduce the number of actual evaluations of these functions. The writeup,
McKenzie et al (1980 [21]), is incorrect in its description of the output of this routine.

Routine(s) called: none

Routine BESSJ
(IPD,W)

This routine evaluates Bessel functions jk

(
ωr
c

)
at the grid points for K=L-1,L,L+1 and

stores them in the arrays BJ(..,1), BJ(..,2), BJ(..,3) respectively. It uses a power
series expansion for small r and switches to SIN/COS expansion when more than 4 terms
in the power series are required.

Routine(s) called: none

Routine BREID
(IPD,IBUG1,IBUG2,JA1,IPCA,JB1)

This routine computes closed shell contributions - AAAA and exchange only.

Routine(s) called: CLRX, CXK, ITRIG, TALK, SNRC.

Routine BREIT
(IPD,IBUG1,IBUG2,IBUG3,JA1,JB1,JA2,JB2)

This routine computes the coefficients appearing in Grant and McKenzie (1980 [16]). The
coefficients for each choice of orbitals JA1, JB1, JA2, JB2 depend on 2 further parameters
NU and K; there are IMU integrals for each such choice, where:

ITYPE 1 2 3 4 5 6
IMU 4 8 1 1 3 4

Routine(s) called: CXK, GENSUM, ITRIG, KNJ, LTAB, MODJ23, MUMDAD, NJGRAF,
OCON, TALK, SETJ, SNRC

An outline of the calculation follows.

Step 1.0 Initialise pointers and flags and set any tables required.

In this segment, the array IS points to the full list of orbitals, the array JS to the
array JLIST of peel orbital pointers.

1.1 Initialisation

Step 2.0 Set quantum numbers of spectator shells.
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Step 2.1 Examine spectator shells for orthogonality

Step 3.0 Start main calculation, begin with common factors

Step 3.1 Set range of tensor index NU

Step 3.2 Set parameters of summation over parent (barred) terms. The array IROWS is
formed to point to the list of allowed parents of active shells in the array NTAB.

Step 4.0 Sum over all parent terms permitted by angular momentum and seniority selec-
tion rules

Treat IA1 = IB1 as a special case

Treat IA2 = IB2 as a special case

At this point, the current parent has been completely defined, and its quantum num-
bers can now be set. The JTQ arrays must be set if IA1 = IB1 or IA2 = IB2. The
matrix element should be diagonal in barred quantum numbers.

Step 4.1 Evaluate product of 4 CFPs

Step 4.2 Set arrays for defining the recoupling coefficient

Set up the arrays and variables for the direct case.

Set up the arrays and variables for the exchange case.

Step 4.3.1 Summation for direct terms

Step 4.3.2 Summation for exchange terms

Step 4.4 Insert outside factors

Step 5.0 Output results

Step 6.0 Fault diagnostic prints

Routine BREMAT
(IPD,IMCBP,IDUMP,ISTOUT,ISTIN,NREC)

This routine computes the transverse interaction matrix in the Coulomb ASF basis. This
is done in two steps: first the matrix is generated in the CSF basis; next it is transformed
to the Coulomb ASF basis using the matrix of eigenvectors of the Coulomb hamiltonian
matrix.

In generating the transverse interaction matrix in the CSF basis, for each pair of configura-
tions (JA,JB) it reads the relevant MCBP coefficients, and checks the integral labels against
a sorted list to determine whether the integral has been calculated. If it has, the integral is
taken from the list. If not, it is evaluated. The integral is then multiplied by the relevant
coefficient and added to the matrix element. When each row of the matrix has been calcu-
lated, it is written on to the end of the MCDF dump file, so that if the calculation runs out
of time, it can be resumed without much loss of effort.
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Routine(s) called: BESSEL, BRRA, MATOUT.

Routine BRRA
(IPD,ITYPE,IA,IC,IB,ID,K,RESULT)

This routine evaluates the Breit interaction integrals:

• ITYPE = 1: general R(k; ac|bd)

• ITYPE = 2: general S(k; ac|bd)

• ITYPE = 3: R(k; a, bd)

• ITYPE = 4: F (k; a, b)

• ITYPE = 5: G(k; a, b)

• ITYPE = 6: H(k; a, b)

Routine(s) called: RKINT, SKINT.

Routine CARDIN
(IRD,IPD,NN,RT,IT,JT,LT,CT,KT,ND)

This routine reads a logical record (which may extend over more than one card or physical
record) in free format, and does some processing of the data on the record. Checks are
made on the consistency of the data. See the errors section for a description of errors which
will terminate the program. Numbers are read by constructing a FORMAT statement and
reading from a string.

Description of parameter list:

• NN : number of data items which have been read

• RT : array containing real number values of data where appropriate; all integers are
also stored as real numbers; RT is zero for other than numeric data values

• IT : array containing integer values; real numbers are integerised by truncation and
stored in IT if they are not too large, except when division (/) is used, in which case
it contains the integerised numerator. When an orbital is being specified, it contains
the principal quantum number n; it is zero if a string or a pure logical value is given

• JT : array containing integer values; JT is zero unless division is used, when it contains
the integerised denominator, or when an orbital is being specified, when it contains
the κ quantum number

• LT : array containing logical values; LT is .FALSE. unless a logical value of .TRUE.
(or T or TRUE) is given, or a left parenthesis ( is given which is not part of a repeat
count
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• CT : array containing strings; CT is blank unless a string is given or an orbital is
specified; in the latter case CT contains the orbital angular label, e.g. P- for l = 1, j
= 1/2; valid strings must commence with a letter, but may contain numbers and the
characters / . and - as well as letters

• KT : number of non-blank characters in CT

• ND : sets dimension of above arrays

The following characters are recognised by CARDIN:

• all letters and numbers and + - * / ( ) and .

• ’ ’ (blank) is used to separate data items

• ’C’ can be used to continue a logical record onto the next physical record; when this
character is found in isolation, the remainder of the current record is checked for data
— an error occurs if any is found — and a new record is read; there is no limit on the
number of continuations

• ’/’ can be used to input fractions with numerator or denominator being real or integer

• ’E’ denotes exponent (of 10); ’D’ may also be used; the exponent must be an integer
between +ITENMX and -ITENMX (see main program for definition)

• ’*’ is used to indicate a repeated value or series of values (as in FORTRAN DATA
statements). If a series of values is used, they must be enclosed in parentheses e.g.
4*(1 2 3) is used for 1 2 3 1 2 3 1 2 3 1 2 3; values may be numeric or orbitals, and
may include a range (see ’-’ below)

• ’-’ in isolation is used to specify a range of values, e.g., 4 - 7 is used for 4 5 6 7 ;
may be used for numbers and orbitals; in the latter case, the logical value for the first
orbital is set to .TRUE. and no further processing of the range is done, whereas in
the former case, the series of numbers is developed in situ

• ’T’ in isolation denotes logical value .TRUE.

• ’F’ in isolation denotes logical value .FALSE.

• ’(’ is used in conjunction with * for repeating a group of numbers (see ’*’ above);
otherwise it sets a logical value of .TRUE. for the following number

• ’)’ terminates a group of numbers (see ’*’ above); otherwise it sets a logical value of
.FALSE. for the preceding number

Routine(s) called: LNGTH.

Routine CFOUT
(IPD)
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This routine prints configuration state function data in the usual format.

Routine(s) called: none

Routine CFP
(IPD,LOCK,NEL,IJD,IVD,IWD,IJP,IVP,IWP,COEFP)

This routine selects the appropriate table of fractional parentage coefficients in jj-coupling.

Input variables:

• IPD : output stream number

• LOCK : ±(2j + 1)

• NEL : number of equivalent electrons in shell

• IJD/IJP : total J of daughter/parent state

• IVD/IVP : seniority of daughter/parent state

• IWD/IWP : other quantum number (if needed)

Output variable:

• COEFP : numerical result

This control routine does not check the input variables for consistency, except the trivial
case of j = 1/2. All other checks are performed at a lower level. The package will return
correct results for j = 3/2, 5/2, 7/2. Higher values of j return a value 1.0 if NEL = 1 or 2;
otherwise 0 with an error signal.

Routine(s) called: CFP3, CFP5, CFP7, CFPD.

These routines have been taken from Grant (1972 [10]).

The following changes have been made:

• correction deck has been incorporated

• routine CFP has been modified

• programs now stops when an error is detected

Routine CFP3
(IPD,NEL,IJD,IJP,COEFP)

Table look-up for fractional parentage coefficients of equivalent electrons with j = 3/2. See
listing of CFP for argument list.

Routine(s) called: none

Routine CFP5
(IPD,NEL,IJD,IVD,IJP,IVP,COEFP)
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Table look-up for fractional parentage coefficients of equivalent electrons with j = 5/2. See
listing of CFP for argument list.

Routine(s) called: none

Routine CFP7
(IPD,NEL,IJD,IVD,IJP,IVP,COEFP)

Table look-up for fractional parentage coefficients of equivalent electrons with j = 7/2. See
listing of CFP for argument list.

Routine(s) called: none

Routine CFPD
(IPD,LOCK,NEL,IJD,IVD,IWD,IJP,IVP,IWP,COEFP)

This is a dummy routine. It returns correct values for 1 or 2 particle or single hole states,
and signals an error otherwise.

Routine(s) called: none

Routine CGAMMA
(IPD,ARGR,ARGI,RESR,RESI)

This routine returns in RES the complex Gamma function of the complex argument ARG.
The real and imaginary parts of RES and ARG are distinguished by the suffixes R and I
respectively.

Only RESR is nonzero if ARGI is zero.

The ARCTAN function required must return angles (in radians) in the range [0, 2π).

Routine(s) called: ARCTAN.

Routine CHEKFL
(IPD,NUNIT,GTYPE,GSTAT)

This routine checks the standard GRASP file header.

NUNIT is the file unit number.

GTYPE is the GRASP file type.

GSTAT is the GRASP file status.

The check on the file status can be overridden by specifying it as a blank. The check on
the basic dimensions is not made on orbitals files.

Routine CLOSFL
(NUNIT)

This routine closes files. The STATUS is always assumed to be ’KEEP’.

Routine CLRX—function
(KAPPAA,K,KAPPAB)

The value of CLRX is the 3j-symbol:
(

ja k jb
1
2 0 −1

2

)
(4.4)
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The KAPPAA and KAPPAB are κ angular quantum numbers. The formula is taken from Brink
and Satchler (1993 [4]).

The logarithms of the first MFACT factorials must be available in common block /FACTS/
for this program to function correctly. Note that N ! is stored in FACT(N+1).

Routine(s) called: none

Routine CONSIS
(J)

This routine computes the weighted self-consistency of orbital J.

Routine(s) called: none

Routine CONVRT
(NUMBER,CHRSTR,NDIGIT)

This routine accepts an integer NUMBER as input. The output CHRSTR is a character string
in whose first NDIGIT places the integer is written as the corresponding character string.

Routine(s) called: none

Routine COR
(IPD,IBUG1,IBUG2,IBUG3,JA1,JB1,JA2,JB2)

This routine computes the MCP coefficients. Equation numbers are those of Grant (1973 [11]).

Routine(s) called: CRE, GENSUM, ITRIG, LTAB, MODJ23, MUMDAD, NJGRAF, OCON,
SETJ, SKRC, SPEAK, KNJ

An outline of the calculation follows.

• 1.0 Initialise pointers and flags and set any tables required.

In this segment, the array IS points to the full list of orbitals, the array JS to the
array JLIST of peel orbital pointers.

• 1.1 Initialisation

• 2.0 Set quantum numbers of spectator shells.

• 2.1 Examine spectator shells for orthogonality

• 3.0 Start main calculation, begin with common factors

• 3.1 Set range of tensor index K

• 3.2 Set parameters of summation over parent (barred) terms in eq.(5) (loc cit). The
array IROWS is formed to point to the list of allowed parents of active shells in the
array NTAB.

• 4.0 Sum over all parent terms permitted by angular momentum and seniority selection
rules

Treat IA1=IB1 as a special case
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Treat IA2=IB2 as a special case

At this point, the current parent has been completely defined, and its quantum num-
bers can now be set. The JTQ arrays must be set if IA1=IB1 or IA2=IB2. The matrix
element should be diagonal in barred quantum numbers.

• 4.1 Evaluate product of 4 CFPs

• 4.2 Set arrays for defining the recoupling coefficient

Set up the arrays and variables for the direct case.

Set up the arrays and variables for the exchange case.

• 4.3 Calculate AD, eq.(6), without the phase factor.

• 4.4 Calculate AE, eq.(6), without the phase factor.

• 4.5 Insert factors independent of barred quantum numbers.

Begin with common statistical factors, eq.(5).

• 4.6 Compute products of reduced matrix elements, eq.(7).

• 5.0 Output results

• 6.0 Fault diagnostic prints

Routine CORD
(IPD,IBUG1,IBUG2,JA1,IPCA,JB1)

This routine computes the MCP coefficients for contributions involving closed shells. The
standard formulae are given in Grant (1970 [9]) eq.(8.33).

In this segment JA1, JB1 point to the JLIST array, IA1, IB1 to the full list of orbitals.

Routine(s) called: CLRX, SPEAK.

Routine COUNTX
(FR,MTPFR,NNCFF,SGN)

This routine counts the nodes in the radial function FR using the criteria given by Froese
Fischer (1986 [7]) p.314-315. The function RF is assumed defined on the first MTPFR points
of the radial grid. The sign of the function at the first oscillation is also determined.

Routine(s) called: none

Routine CPPOT
(IPD)

This routine tabulates effective nuclear potential (the sum of the nuclear and core polar-
isation potentials) for all valence orbitals. The Norcross-Seaton form of the CUTOFF is
used.

Routine(s) called: WFN
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Routine CRE—function
(KAP1,K,KAP2)

This routine computes the relativistic reduced matrix element

(j1||C(K)||j2) = (−1)j1+ 1
2

√
(2j1 + 1)(2j2 + 1)

(
j1 K j2
1
2 0 −1

2

)
(4.5)

defined by eq.(5.15) in Grant (1970 [9]) p.762.

KAP1, KAP2 are the κ values corresponding to j1, j2. The triangle conditions are tested by
routine CLRX.

Routine(s) called: CLRX.

Routine CSFM
(IPD,ASFA,ASFB,LEV1,LEV2)

This routine calculates the CSF Coulomb, Babushkin and magnetic matrix elements for a
transition between levels separated by energy OMEGA.

Routine(s) called: SPME.

Option 18 (LTC-CSFM) — Print MCT coefficient.

Routine CSFOUT
(IPD,LHEAD)

This routine prints the CSF in the given coupling scheme. For each CSF, An output line
is constructed which consists of three strings, filled with the symbols used to specify the
appropriate occupation numbers, angular momenta, etc, for each open subshell and the way
they are coupled.

Description of the parameter list:

LHEAD: option to select printing of heading for each nonrelativistic configuration. Set to
.TRUE. if heading is required.

Routine(s) called: LNGTH.

Routine CXK
(IPD,S,IS,KAPS,NU,K,IBR,IEX)

This routine computes the coefficients of radial integrals in the expansion of the effective
interaction strength:

X(k; a, b, c, d). (4.6)

Input variables:

• IS : orbital labels

• KAPS: values of 2κ

55



• NU : order of radial integral

• K : index of tensor operator

• IBR : classifies type of radial integral

• IEX : 1 for direct, 2 for exchange terms

There are 4 distinct cases:

• IBR = 1
A. all states distinct
B. ((a = b) .AND. (c 6= d)) or ((a 6= b) .AND. (c = d))
these give 12 distinct radial integrals, with values of K and NU limited only by angular
momentum and parity

• IBR = 2
((a = c) .AND. (b 6= d)) or ((a 6= c) .AND. (b = d))
this case gives 1 non-zero integral when K = NU is odd

• IBR = 3
((a = c) .AND. (b = d)) and (a 6= b)
integrals of magnetic F -type when K = NU is odd

• IBR = 4
((a = d) .AND. (b = c))
gives 3 magnetic G-type integrals and 4 H-type integrals

Output:

S : coefficients S(MU) MU = 1,12

Routine(s) called: CRE.

Routine DACON

This routine includes the contribution from the off-diagonal I(a, b) integrals in the ’ex-
change’ term.

Routine(s) called: DPBDT

Routine DAMPCK
(IPR,J,ED1,ED2)

This routine determines the damping factor appropriate to the present orbital. The algo-
rithm is taken from Froese Fischer’s program MCHF.

Routine DAMPOR
(IPD,J,INV)
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This routine damps the orbital wavefunction with index J. It also stores the previous de-
termination of this orbital.

Routine(s) called: COUNTX, RINT.

Routine DATAIN
(IRD,IPD,IBUG,IO,IOMCDF)

Only the TIME card is read by PROGRAM GRASP. The present routine controls the
reading of the remainder of the command/data file.

Routine(s) called: CALEN, CARDIN, DATSCF, DATR, DATNR, LNGTH.

• Title card — COMPULSORY

Format: 1 string (1 to 72 alphanumeric characters)

This is the only card which is not read by CARDIN.

• Convention/dimension/transformation/print-control card — COMPULSORY

Format 1: 2 or 3 integers

Format 2: 3 integers and up to 5 labels

• MCP invocation and input/output stream specification card — OPTIONAL

Format: string of 3 characters, 2 to 3 integers

• MCDF invocation and options specification card — OPTIONAL

Format: string of 4 characters, 0 – 34 different integers

• MCT invocation and input/output stream specification card — OPTIONAL

Format 1: string of 3 characters, 3 integers, 1 – NRP integers
Format 2: string of 3 characters, 3 integers, 0, 1 to NRP/2 positive integers

• MCBP invocation and input/output stream specification card — OP-
TIONAL

Format: string of 4 characters, 1 or 2 integers

• BENA invocation and options specification card — OPTIONAL

Format: string of 4 characters, 0 – 25 integers

• BENA input/output stream specification card — CONTINGENT

Format: 3 – 5 integers

• LOW1 card — OPTIONAL

Format: string of 4 characters, 1 real number

• PRINT card — OPTIONAL

Format: string of 1 to 5 characters, 0 to NCF integers
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• OSCL invocation and options specification card — OPTIONAL

Format: string of 4 characters, 0 – 17 integers

• OSCL input/output stream specification card — CONTINGENT

Format: 2 – 3 integers

• LEV card — OPTIONAL

Format: string of 3 characters, 2 to [NCF] integers

• CUT card — OPTIONAL

Format: string of 3 characters, 1 real number

• LOW2 card — OPTIONAL

Format: string of 4 characters, 1 real number

• END card — COMPULSORY

Format: string of 3 characters

Routine DATANG
(IRD,IPD,RT,IT,JT,LT,CT,KT,ND)

Read angular data using the free format card reader CARDIN.

Coupling scheme cards — CONTINGENT

Format: 1 integer, integers or half-integers, or pairs of integers or half integers and integers,
integers or half- integers

Routine DATNR
(IRD,IPD,RT,IT,JT,LT,CT,KT,ND,IOP,IBUG)

This routine reads card input defining nonrelativistic configurations and uses it to generate
all possible relativistic configurations which produce the required total J value. NCFN is the
number of nonrelativistic configurations to be defined; NWM is the number of nonrelativistic
orbitals to be defined; and ND is the maximum number of numbers that can be read in
CARDIN.

Routine(s) called: CARDIN, JJCSF, REORDR, JJRECP, JRECUP, JJJLSJ, LLLSSS,
JLKSJ, AVCONF, MANOUT.

Orbital data cards; [NW] in number — COMPULSORY

Format: label, 0 or 1 or [NW] integers

label: this consists of an integer [NP(I)] and a spectroscopic angular-momentum label
[NH(I)] for the orbital [I]; no intervening blanks must be present; the labels are the usual
ones: ”S”, ”P”, ”D”, etc.

0 or 1 or [NW] integers — optional — occupation numbers for orbital [I]; if 0 numbers
are input, the subshell is assumed full in every configuration; if 1 integer is given, each
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configuration has this occupation number; if [NCF] numbers are present, these are the
subshell occupation numbers for each configuration

ANG card — COMPULSORY

See the description of this card in routine DATANG

Angular-momentum coupling information card — COMPULSORY

[NCF] in number

Format: 1 to NOPEN+4 integers and/or logical values

1 integer — COMPULSORY — total J value for the nonrelativistic configuration; if −1,
all possible J values are generated

1 integer — OPTIONAL — number of subshells to be transformed to LSJ coupling

1 integer — OPTIONAL — number of subshells to be transformed from LSJ to LLSS
coupling

1 logical value — OPTIONAL — flag to indicate whether J − L coupling is to be used on
the last LSJ subshell (”F” or ”FALSE” = no, ”T” , ”TRUE” or ”J-L” = yes)

Remaining values — OPTIONAL — a list of the subshells in order of coupling. Parentheses
may be used to indicate that a pair of subshells is to be coupled together before coupling
to the resultant.

Routine DATOUT
(IPD)

This routine outputs some information read from the MCDF dump.

Routine(s) called: none

Routine DATR
(IRD,IPD,RT,IT,JT,LT,CT,KT,NMAN,NWM,ND,IBUG)

This routine reads the card input defining relativistic configurations as described in the
CPC write up.

NMAN : number of relativistic configurations to be defined
NWM : number of relativistic orbitals to be defined
ND : maximum number of numbers that can be read in CARDIN

Routine(s) called: CARDIN, CONVRT, DATANG, LNGTH.

Orbital data cards; [NW] in number — COMPULSORY

Format: string, 0, 1 or [NCF] integers

ANG card — COMPULSORY

Format: string of 3 characters, 0 to 7 integers

Routine DATSCF
(IRD,IPD,RT,IT,JT,LT,CT,KT,ND,IOP,IOMCDF)

This routine gathers the basic input data for the MCDF and SCF packages.

Routine(s) called: CONVRT, LNGTH
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• MCDF file specification card — COMPULSORY

Format: 3 to 5 integers

IOMCDF(1) — IR1> 0 — required — ’Sorted MCP file’

IOMCDF(2) — IR2> 0 — required — ’MCDF read file’

IOMCDF(3) — IP2> 0 — required — ’MCDF dump file’ — can be set equal to IR2

IOMCDF(4) — IR3> 0 — required — ’ORBOUT read file’

IOMCDF(5) — IP3> 0 — required — ’ORBOUT dump file’ — can be set equal to IR3

• Nuclear charge/mass card — COMPULSORY

Format: 1 to 2 real numbers

Z — nuclear charge — required

ATW — nuclear mass (defaults to zero)

• NUCLEUS card — OPTIONAL

Format: string of 7 characters, string of 5 characters, 1 to 2 real numbers

• FIX card — OPTIONAL

Format: string of 3 characters, 1 to [NW]-1 integers

This card must precede the ORBOUT card if both are used

• LOAD card — OPTIONAL

Format: string of 4 characters, [NW] integers

• ORBOUT card — OPTIONAL

Format: string of 5 characters, 0 to [NW] integers

• RHFX card — OPTIONAL

Format: string of 4 characters, 1 to 3 real numbers

• SCF card — OPTIONAL

Format: string of 3 characters, 1 to 5 pairs of keywords and numbers

• GRID card — OPTIONAL

Format: string of 4 characters, 1 to 4 pairs of keywords and numbers

• RLDA card — OPTIONAL

Format: string of 4 characters, 0 or 1 integer, 1 real number

• PRINT card — OPTIONAL

Format: string of 5 characters, 0 to NCF integers

This card may be input only once, either in this section or in DATAIN
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• SCREEN card — OPTIONAL

Format 1: string of 6 characters, 1 real number

Format 2: string of 6 characters, 1 to [NW] pairs of 1 integer and 1 real number

• METHOD card — OPTIONAL

Format 1: string of 2 to 6 characters, 1 integer

Format 2: string of 2 to 6 characters, 1 to [NW] pairs of integers

• CDAMP card — OPTIONAL

Format 1: string of 2 to 5 characters, 1 real number

Format 2: string of 2 to 5 characters, 1 to [NCMIN] pairs of 1 integer and 1 real
number

• ODAMP card — OPTIONAL

Format 1: string of 2 to 5 characters, 1 real number

Format 2: string of 2 to 5 characters, 1 to [NW] pairs of 1 integer and 1 real number

• CPOLPOTL card — OPTIONAL

Format: string of 8 characters, 1 integer

N.B. This card must be specified after the FIX card

• Core-polarisation potential data cards — CONTINGENT

Read orbital, dipole polarisability, cutoff radius

• NOINVERT card — OPTIONAL

Format: string of 8 characters, 0 to [NW] integers

• THRESHLD card — OPTIONAL

Format: string of 8 characters, 1 real number

• Type of calculation card — COMPULSORY

Format: string of 2 characters, numbers depending on string

Routine DCBSRW
(IPD,NPRIN,KAPPA,Z,E,RG0,RG,RF,MTPX)

This routine computes the Dirac-Coulomb bound-state orbital radial wavefunction. Eq.(13.5)
and (13.5’) of Akhiezer and Berestetskii (1957 [2]) are modified to ensure positive slope at
the origin for RG are used.

The arguments are as follows:

• IPD : (input) output stream number
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• NPRIN: (input) the (usual) principal quantum number

• KAPPA: (input) the relativistic angular quantum number

• Z : (input) the nuclear charge

• E : (output) the Dirac-Coulomb eigenenergy

• RG0 : (output) coefficient of the leading term in the series expansion of the large
component near the origin

• RG : (output) r times the large component wavefunction of Akhiezer and Berestetskii

• RF : (output) r times the small component wavefunction of Akhiezer and Berestetskii

• MTPX : (output) maximum tabulation point

Routine(s) called: CGAMMA.

Routine DEFCOR
(J)

This routine computes the deferred corrections for orbital J.

Routine(s) called: none

Routine DEFECT
(IPD,J,DMNK)

This routine calculates the relativistic quantum defect DMNK, as defined by Johnson and
Cheng (1979 [18]), from the one-particle energy ENK.

Routine(s) called: none

Routine DEL12E
(IPD,IR1,EAL,EOL,J,JP,DEL1E,DEL2E,DELTAC)

This routine evaluates the variations DEL1E, DEL2E for a rotation in the subspace defined
by orbitals J, JP.

Routine(s) called: FCO, GCO, RINTI, SLATER.

Routine DPBDT
(J)

This routine computes H times the derivative, with respect to the internal grid, of the large
and small components of the wavefunction with index J. These are tabulated, respectively,
in arrays TA and TB in common block /TATB/.

A thirteen-point Lagrange formula is used for the calculation of derivatives.

Routine(s) called: none

Routine DRAW
(IPD,P,SP,Q,SQ,MF)

62



This routine generates a printer plot. P and Q are radial functions with the maximum
tabulation point MF. SP is the factor by which P is to be scaled, SQ is the factor by which Q
is to be scaled.

Routine(s) called: none

Routine DSTRBN
(IOPEN,NC,JCFN)

This routine calculates the distribution of electrons from a nonrelativistic subshell over
relativistic subshells and calculates their statistical weights.

Routine DUMP
(IPD,IP2,IC)

This routine writes the MCDF dump file on datastream IP2. If IC=0, the status label
’ITER’ is put on the file header; if IC=1, the status label ’CONV’ is written instead.

Routine(s) called: none

Routine EIGEN
(IPD,J,RESULT)

This function computes an estimate of the energy of orbital J.

Routine(s) called: DPBDT, QUAD.

Routine ENGOUT
(IPD,EAV,E,JTOT,IPAR,ILEV,NN,MODE)

This routine prints energy levels, splittings, and energies relative to the lowest in Hartrees,
Kaysers, and eV, using the reduced mass corrected value for the Rydberg. If MODE is 0, only
the eigenenergies are printed. If MODE is 1, the eigenenergies and separations are printed.
If MODE is 2, the eigenenergies and energies relative to level 1 are printed. If MODE is 3, the
eigenenergies, separations, and energies relative to level 1 are printed.

Routine(s) called: none

Routine ES
(F,S2F,S3F)

This routine evaluates the sum of the series

Sk(f) =
∞∑

n=0

(−1)n exp(nf)
nk

(4.7)

for k = 2, 3 to machine precision. This is a utility routine, called by routines NUCPOT
and NCHARG.

Routine(s) called: none

Routine ESTIM
(J)

This routine implements part 1 of algorithm 7.1 of Froese Fischer (1986 [7]) p.320-321.
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Routine(s) called: none

Routine FCO—function
(IPD,K,IR,IA,IB)

This routine evaluates the coefficient

fk
r (a, b) (4.8)

Here K (k) is the multipolarity, IR (r) is the sequence number of the configuration and IA
(a) and IB (b) are orbital sequence numbers. See Grant et al (1980 [15]) eq.(6).

Routine(s) called: CLRX.

Option 14 set (ITC-FCO) — Print out of angular coefficient fk
r (a, b).

Routine FIXJ
(JA1,JA2,KA,IS,KS,NS,KJ23)

This routine sets up the arrays J1, J2, J3 required by the recoupling package NJGRAF.

Routine(s) called: none

Routine FUNK—function
(IPD,X,N)

This function evaluates the KN (X) functions using the analytic functions defined in tables
1 and 3 of Fullerton and Rinker (1976 [8]).

Routines called: none

Routine FUNL—function
(IPD,X,K)

This function evaluates the LK(X) functions using the analytic functions defined in table
5 and eq.(20) and (21) of Fullerton and Rinker (1976 [8]).

Routine(s) called: none

Routine FZALF
(IPD,N,KAPPA,Z,VALUE)

An estimate VALUE of the function F (Zα) is computed here.

Routine(s) called: KLAMAQ, MOHR.

Routine GCO—function
(IPD,K,IR,IA,IB)

This routine evaluates the coefficient

Gk
r (a, b) (4.9)

Here K (k) is the multipolarity, IR (r) is the sequence number of the configuration, and IA
(a) and IB (b) are orbital sequence numbers. See Grant et al (1980 [15]) eq.(7).

Routine(s) called: CLRX.
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Option 14 set (ITC-GCO) — Print of coefficient Gk
r (a, b).

Routine HEADER
(IPD)

Routine(s) called: none

Routine HEADFL
(NUNIT,GTYPE,GSTAT)

This routine writes standard GRASP file headers. Two records are written.

CHARACTER*72 IHED ... title of run
CHARACTER*8 ITIME ... time
CHARACTER*8 IDATE ... date
CHARACTER*4 GTYPE ... is the GRASP file type.

GTYPE = ’BENA’
GTYPE = ’MCBP’
GTYPE = ’MCDF’
GTYPE = ’MCP ’
GTYPE = ’MCT ’
GTYPE = ’ORBS’
GTYPE = ’OSCL’

CHARACTER*4 GSTAT ... is the GRASP file status.
GSTAT = ’ ’
GSTAT = ’CONV’
GSTAT = ’CSF ’
GSTAT = ’INT ’

WRITE (NUNIT) IHED,ITIME,IDATE,GTYPE,GSTAT

INTEGER NW ... number of orbitals
INTEGER NCF ... number of CSFs

WRITE (NUNIT) NW,NCF

Routine(s) called: none

Routine HOVLAP
(IPD,P,Q,MTPO,NP,KAPPA,Z,RESULT)

This routine computes the overlap of the orbital tabulated in the arrays P and Q with
maximum tabulation point MTPO with a hydrogenic orbital with parameters NP, KAPPA, Z.

Routine(s) called: DCBSRW, QUAD.

Routine IMPROV
(IPD,IR1,CI,EAL,EOL,J)

This routine directs the present implementation of algorithms 5.2 and 5.3 of Froese Fischer
(1986 [7]).
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Arguments:

J: (input) the index of an orbital.

Routine(s) called: DACON, DAMPCK, DAMPOR, LAGCON, MATRIX, NEWCO, OR-
THOR, ORTHSC, QUAD, ROTATE, SETCOF, SETLAG, SOLVE, SXCPOT, TIMER,
XPOT, YPOT

Routine IN
(IPD,IORB,JP,P,Q,MTP)

This routine computes the solution of an inhomogeneous pair of radial Dirac equations in
the tail region. A simple extension of the method of Froese Fischer (1963 [5]) is used. The
equations are treated as a boundary value problem, with the value of P(R) given at the
inner boundary and required to be sufficiently small at the outer boundary. The location
of this second boundary is determined in the course of the calculation. The same finite
difference equations are used as in the outward integration.

Arguments:

• IPD : output stream number IORB : (input) index of orbital

• JP : (input) tabulation point at which the outward integration terminated

• P, Q : (input and output) arrays containing, respectively, the large and small compo-
nents of the solution

• MTP : (output) maximum tabulation point of functions P, Q

When written in matrix form the system of linear equations is Mw = v, where v is a vector
consisting of the elements Q(JP), P(JP+1), Q(JP+1), · · ·. The matrix M is of band type,
with 5 elements in each row. M is expressed as a product of two triangular matrices L and
U (the L/U decomposition, carried out by the Crout procedure), variable elements of L
being stored in the arrays TC, TD and TE, and variable elements of U in TH, TI and TJ. The
solution vector w is then obtained by solving two triangular systems, Lz = v and Uw = z.

Routine(s) called: none

Routine INIT
(IPD,IR2,IR3,CI,EAL,EOL)

This routine initialises the MCDF problem.

Routine(s) called: DCBSRW, INTRPQ, ORTHSC, POSNFL, TFPOT, TFWAVE

Routine INTERP
(IPD,XARR,YARR,NARR,XVAL,YVAL,ACCY)

This routine returns YVAL given a value XVAL by interpolating using a pair of arrays
XARR(1:NARR), YARR(1:NARR), that tabulate a function. ACCY is the desired accuracy of
the estimate: a warning message is issued if this is not achieved. A warning is also issued
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when the routine is extrapolating. Aitken’s algorithm is used. See, for instance, Hildebrand
(1974 [17]).

Routine INTRPQ
(IPD,PA,QA,MA,RA,J)

This routine interpolates the arrays PA(1:MA), QA(1:MA), tabulated on grid RA(1:MA) into
the common arrays PF(1:MF(J),J), QF(1:MF(J),J). (Aitken’s algorithm is used. See Hilde-
brand 1974.)

A check is then made on the norm of the orbital and the orbital is renormalised if necessary.

Routine(s) called: RINT

Routine IROW1—function
(IPD,NELC,KSI)

This routine locates the row position of configuration jn in table NTAB.

Routine(s) called: none

Routine ISPARM
(IPD,IR1)

The isotope-shift parameters

∆E/∆C and ∆E/∆A (4.10)

for the appropriate energy levels are computed in this routine.

Routine(s) called: NUCPOT, QUAD.

Routine ITRIG—function
(I1,I2,I3)

The triangular delta. Input: values of 2J +1; output: 1, if Js form a triangle, 0, otherwise.

Routine(s) called: none

Routine JACOBI
(IPD,EOL)

This routine determines the eigenvalues and eigenvectors of the hamiltonian matrix using
the method of Jacobi. Two references are appropriate: Rutishauser (1966 [26]) and Press
et al (1986 [23]) sec. 11.1.

Only the upper triangle of EMT (in common block /HMAT/) need be given. This is destroyed
in the process of diagonalisation. The eigenvalues are returned in SA (in common block
/HMAT/), the eigenvectors in DRS (in common block /SEMI/), both ordered appropriately
for the type of calculation as specified by the logical input variable EOL.

Routine JJCSF
(IPD,NST,NCF,JMAN,JF,IPAR)

This routine sets up CSF in jj coupling. It uses a table of allowed angular momenta,
seniority, etc., for each occupation number for each subshell to set up CSF in which the
angular momenta are successively coupled.

Description of the parameter list:

67



• NST, NCF : first and last CSF for given configuration

• JMAN : index of current nonrelativistic configuration

• JF : total angular momentum 2J + 1 for configuration

• IPAR : parity of configuration

Output:

The orbital occupation numbers are stored in array IQ (common block /ORB2/); the total
angular momenta, seniority and any other quantum numbers necessary for each subshell
are stored in array JQS, and a flag to indicate whether the subshell is full, empty or open
(values of +1, −1 and 0 respectively) is stored in array ICHOP. The angular momenta arising
from the coupling of the subshells are stored in array JCUP. These arrays are in common
block /STAT/. The total angular momentum and parity of the CSF are stored in arrays
ITJPO and ISPAR respectively, in common block /SYM/. The subshell and coupled angular
momenta are also stored in arrays JJSUB1, JJSUB2, JJPCUP and JJCUP in common blocks
/CUP2/ and /CUP3/.

Note: the routine will handle at most 4 subshells. However, it has been written so that
the number of subshells can be easily increased, by copying and changing certain marked
sections of the code.

Routine(s) called: none

Routine JJJLSJ
(IPD,IBUG3,NST,NCSF,NJJ,JMAN)

This routine transforms subshells from jj to LS coupling.

Description of the parameter list:

• NST, NCSF : first and last CSF for given configuration

• NJJ : number of inner subshells to remain in jj coupling

• JMAN : index of current nonrelativistic configuration

Output:

The transformation matrix is stored in array TC in common block /CUP0/. The subshell
angular momenta are stored in array NVSL in common block /NRD6/.

Routine(s) called: LSTERM, SSTC, LTRG, ORTHOG.

Routine JJRECP
(IPD,NST,NCSF,JMAN)

This routine recouples subshell J values from the order

· · · (((· · ·)J1,...,k−1Jk)J ′kJk)J1,...,k · · · (4.11)
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to the order

· · · ((· · ·)J1,...,k−1(JkJk)Jk)J1,...,k · · · (4.12)

Description of the parameter list

• NST,NCSF : first and last CSF for given configuration

• JMAN : index of current nonrelativistic configuration

Output

The transformation matrix is stored in array TC in common block /CUP0/. The subshell
angular momenta are stored in array JJSCUP in common block /CUP3/.

Routine(s) called: LTRG, DRACAH, ORTHOG.

Routine JLABEL—block data

This block data sets up strings giving j-values and parity signs. The string for angular
momentum j is that in the array location 2J+1. If parity is stored as −1 for odd parity and
1 for even parity, the appropriate array element is in location (3+PARITY)/2.

Routine JLKSJ
(IPD,NST,NCF,NOPEN,NJJ,KSUB)

This routine recouples the last subshell from the scheme

((· · ·)J1,...,n−1(LnSn)Jn)J (4.13)

to the scheme

(((· · ·)J1,...,n−1Ln)KSn)J (4.14)

Description of the parameter list

• NST,NCF : first and last CSF for given configuration

• NOPEN : number of open shells in configuration

• NJJ : number of inner subshells to remain in jj coupling

• KSUB : array containing list of (open) subshell indices in required order of coupling
(innermost first)

Output

The transformation matrix is stored in array TC in common block /CUP0/. The K values
are stored in array NVSL in common block /NRD6/.

Routine(s) called: DRACAH, LTRG, ORTHOG.
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Routine JRECUP
(IPD,IBUG3,NST,NCSF,JMAN,KSUB,LPAIR)

This routine recouples subshells from the standard order to the required order.

Description of the parameter list:

• NST, NCSF : first and last CSF for given configuration

• JMAN : index of current nonrelativistic configuration

• KSUB : array containing list of (open) subshell indices in required order of coupling
(innermost first)

• LPAIR : logical array indicating whether subshell is first of a pair of subshells which
are to be coupled together before being coupled to the last resultant

Output:

The transformation matrix is stored in array TC in common block /CUP0/. The subshell
angular momenta are stored in array JJCUP in common block /CUP3/.

Note: the routine will handle at most four (4) subshells. However, it has been written
so that the number of subshells can be easily increased, by copying and changing certain
marked sections of the code.

Routine(s) called: NJGRAF, GENSUM, ORTHOG

Routine KLAMAQ
(IPD,N,KAPPA,Z,FZALFA)

The function F (Zα) is estimated here. We use the series expansion given by eq.(1) and
eq.(2) and the table of Bethe logarithms in Klarsfeld and Maquet (1973 [19]). The vacuum
polarisation contribution in eq.(2) is omitted.

Routine KNJ
(JD6C,JD7C,JD8C,JD9C,JDWC,JD6,JD7,JD8,JD9,JDW,JDDEL,
LDDEL,MDP,JD6P,JD7P,JD8P,JD9P,JDWORD,NDLSUM,
NDBJ,NDB6J,KD6CP,KD7CP,KD8CP,KD9CP,JDSUM4,JDSUM5,
JDSUM6,INVD6J)

This routine stores data for future calls to GENSUM.

Routine LAGCON
(J)

This routine includes the Lagrange multiplier contribution in the ’exchange’ term.

Routine(s) called: none

Routine LLLSSS
(IPD,IBUG3,NST,NCF,NJJ,NOPEN,NSUB,KSUB,LPAIR)

This routine recouples from intermediate to LS coupling.

Description of the parameter list:
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• NST, NCF : first and last CSF for given configuration

• NJJ : number of inner subshells to remain in jj coupling

• NOPEN : number of open shells in configuration

• NSUB : number of subshells to be transformed

• KSUB : array containing list of (open) subshell indices in required order of coupling
(innermost first)

• LPAIR : logical array indicating whether subshell is first of a pair of subshells which
are to be coupled together before being coupled to the last resultant

Output:

The transformation matrix is stored in array TC in common block /CUP0/. The subshell
angular momenta are stored in array NVSL in common block /NRD6/.

Note: the routine will handle at most four (4) subshells. However, it has been written
so that the number of subshells can be easily increased, by copying and changing certain
marked sections of the code.

Routine(s) called: NJGRAF, GENSUM, LTRG, ORTHOG.

Routine LNGTH—function
(STRING)

Routine LOAD
(IPD,IDT,NREC)

This routine reads the MCDF dump file.

Routine(s) called: DATOUT, HEADER, SETQIC.

Routine LSDATA—block data

Routine LSTERM
(IPD,JMAN)

This routine sets up LS terms for each unfilled subshell, storing V , S and L values in the
array NLSVT. Limitations on configurations are (1) q < 3 and (2) l < 3, q > 3, where q is the
reduced occupation number, i.e. 4l + 2− q if q > 2l + 1, q otherwise, and l is the subshell
orbital angular momentum.

Routine(s) called: none

Routine LTAB
(IPD,IS,NQS,KS,IROWS)

This routine locates rows of possible parents of active shell states for accessing NTAB. It is
assumed that empty shells have been eliminated from consideration by routine RKCO.

Routine(s) called: none
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Routine LTRG—function
(J1,J2,J3)

This function tests the triangle condition on three angular momenta. It returns the value
.TRUE. if the condition is satisfied, .FALSE. otherwise. J1, J2 and J3 are the 2J +1 values
of the angular momenta.

Routine MANOUT
(IPD)

This routine prints CSF data in a form that can be read by routine DATR in MCDF
program.

Routine MATOUT
(IPD,HAMIL,ICOL,NR,NC,NRX,NCX,MODE)

This routine prints matrices:

MODE = 1 symmetric
MODE = 2 unsymmetric
MODE = 3 matrix of eigenvectors

Routine(s) called: none

Routine MATRIX
(IPD,IR1,CI,EAL,EOL)

This routine calls routines to form the hamiltonian matrix and to diagonalise it. The total
angular momenta of the ASF are found and the eigenvectors are chosen so that the sign of
the largest element is positive.

Routine(s) called: ENGOUT, JACOBI, MATOUT, SETHAM.

Option 9 set (ITC-MATRIX) — Print hamiltonian matrix.

Option 10 set (ITC-MATRIX) — Print all eigenvalues and eigenvectors for CI case.

Routine MAXARR
(J)

This routine finds the least self-consistent orbital.

Routine(s) called: none

Routine MCBP
(IPD,IBUG1,IBUG2,IBUG3,NOUT,NIN)

This is the main routine of the MCBP package. This package determines the values of and
all indices of the angular coefficients

V kt
rs (abcd) (4.15)

required for the evaluation of the transverse photon interaction.

Routine(s) called: CHEKFL, CLOSFL, HEADFL, OPENFL, TMSOUT, RKCO, RESTMB.
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Routine MCDF
(IPD,IR1,IR2,IP2,IR3,IP3)

This routine solves the MCDF problem. The algorithm of Froese Fischer (1986 [7]) is
followed to the extent appropriate for each of the CI/(E)AL/(E)OL calculations.

Routine(s) called: CPPOT, DUMP, INIT, MATOUT, MATRIX, NEWBAS, NRCWT,
NUCPOT, ORBOUT, PROP, PRWF, RADGRD, SCF, SETIOM, WEIGHT

Routine MCP
(IPD,IBUG1,IBUG2,IBUG3,IBUG4,IBUG6,NOUT,NSORT,NIN)

This is the main routine of the MCP package. This package determines the values of and
all indices of the angular coefficients

Trs(ab) and V k
rs(abcd) (4.16)

k is the multipolarity of a two-particle Coulomb integral. a, b, c and d are orbital sequence
numbers. r and s are configuration state function indices.

Two output files, with unit numbers NOUT and NSORT are generated. We refer to them,
respectively, as the unsorted and sorted MCP output files. The program will restart from
an incomplete unsorted MCP output file. The unit number of the latter is NIN.

Routine(s) called: CHEKFL, CLOSFL, HEADFL, OPENFL, REMAIN, RKCO, TNSRJJ,
TRSORT.

This is a modification of MCP75 by Grant (1976 [13]). The correction deck described in
Grant (1978 [14]) has been incorporated.

Routine MCT
(IPD,IBUG1,IBUG3,IBUG4,IBUG6,NOUT,NSORT,NIN)

This is the main routine of the MCT package. This package determines the values of and
all indices of the angular coefficients

Dk
ab(rs) (4.17)

for tensor operators of ranks KA(I) and parities IOPAR(I), I=1,..,NKA. a and b are orbital
sequence numbers. r and s are configuration state function sequence numbers.

Routine(s) called: CHEKFL, CLOSFL, HEADFL, OPENFL, REMAIN, TNSRJJ, TR-
SORT.

Routine MCTIN
(IPD,NFILE,IOPAR,JKP)

This routine operates in two modes decided by NKP, which is passed in common block
/OSC6/. When NKP is zero, the routine checks the MCT file and sets NKP to the number
of rank/parity combinations in the MCT file. This is an initialisation call. When NKP has
some positive value, this routine loads information about the coefficients with parity and
rank specified by KP(JKP) into the arrays ISLDR and XSLDR. The stream NFILE contains the
MCT coefficients. IOPAR is the parity (±1) and is determined from the sign of KP(JKP).
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Routine(s) called: none

Routine MODJ23

This routine restores common block /COUPLE/ from saved values for exchange case.

Routine(s) called: none

Routine MOHR
(IPD,N,KAPPA,Z,FZALFA)

The function F (Zα) for the 1s, 2s, 2p−, 2p symmetries is computed here. A value is
obtained by interpolating in, or extrapolating from, the table due to Mohr (1983 [22]).

Routine(s) called: INTERP.

Routine MUMDAD
(IPD,IBUG2,IS,KAPS,X)

This routine evaluates the product of 4 CFPs.

Routine(s) called: CFP.

Routine NCHARG

This routine evaluates the nuclear charge density, and stores it in the common array ZZ.

Routine(s) called: ES.

Routine NEWBAS
(IPD)

This routine transforms eigenvectors from jj to LS CSF basis.

Routine NEWCO
(IPD,EOL)

This routine computes the configuration mixing coefficients and generalised occupation
numbers for OL/EOL calculations, given the eigenvectors of the hamiltonian.

Routine(s) called: none

Routine NEWE
(J,SGN,NPRIME,MX,DELEPS,FAIL,INV)

This routine implements part 2 of algorithm 7.1 in Froese Fischer (1986 [7]). The present
code actually implements the version used in the program MCHF where differences occur.

Routine(s) called: OUTBND

Routine NRCWT
(IPD)

Print the weights of the largest five nonrelativistic configuration contributors to each ASF.

Routine NUCPOT
(IPD,VERBOS)
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This routine evaluates the nuclear potential for point and Fermi models.

Routine(s) called: DRAW, ES.

Option 2 set (ITC-NUCPOT) — Print nuclear potential when called from routine MCDF.

Routine OCON—function
(IA1,IB1,IA2,IB2)

This routine evaluates the multiplicative statistical factor. It is assumed that states are
ordered so that IA1≤IB1, IA2≤IB2.
Routine(s) called: none

Routine OPENFL
(IPD,G2NAME,STAT,NUNIT)

This routine opens files for unformatted I/O.

G2NAME is an input. It is a string describing the file.

STAT is the status of the file, one of ’NEW’ or ’OLD’.

NUNIT is the number of the FORTRAN file unit.

Routine ORBOUT
(IPD,IR3,IP3)

This routine writes orbital data to the ”WRITE ORBITALS” file. If MCDF option 22
is set, the ”READ ORBITALS” file is appended to the ”WRITE ORBITALS” file before
orbital data is appended.

Three records of information are written for each orbital.

• Record 1 : NP(J),NAK(J),E(J),MFJ

• Record 2 : PZ(J),(PF(I,J),I=1,MFJ),(QF(I,J),I=1,MFJ)

• Record 3 : (R(I),I=1,MFJ)

Routine(s) called: POSNFL.

Routine ORDER
(IPD)

This routine calls the diagonalisation routines and matches the eigenvalues and eigenvectors
of the higher order matrix to those of the zero order matrix.

Routine(s) called: JACOBI, MATOUT

Routine ORTHOG
(IPD,NST,NCF,CALLER)

This routine checks the orthonormality of the transformation.

Routine(s) called: none.
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Routine ORTHOR
(IPD,J,INV)

This routine Schmidt orthogonalises orbital J to all orbitals which have better self-consistency.
Note that fixed orbitals have the best self-consistency.

Routine(s) called: COUNTX, RINT.

Routine ORTHSC
(IPD,IMODE)

This routine performs Schmidt orthogonalisation. If IMODE is 0, all fixed orbitals are first
orthogonalised in the order defined by the card input. The procedure for IMODE = 1 is then
followed. If IMODE is 1, all orbitals are first orthogonalised to the fixed ones, then from the
first to last as defined by the card input. The program prints overlap integrals.

Routine(s) called: COUNTX, RINT.

Routine OSCL
(IPD,IMCDF,IMCT,ITRPR)

This routine controls the main sequence of routine calls for the calculation of data for
transitions between multiconfiguration Dirac-Fock energy levels.

Routine(s) called: BESSJ, CHEKFL, CLOSFL, CSFM, ENGOUT, HEADFL, LOAD,
OPENFL, MATOUT, MCTIN, PRINTA

Select energies and eigenvalues for calculation. Default — Use best available.

Option 1 (LTC-OSCL) — Use Coulomb results only.
Option 2 (LTC-OSCL) — Use Coulomb+Breit results only.
Option 3 (LTC-OSCL) — Use Coulomb results as well as best results.
Option 4 (LTC-OSCL) — Use Coulomb+Breit results as well as best results.

Option 5 (LTC-OSCL) — Set NLP = {NLP—:70}−7. Default — NLP = NLP—:70−8.

Set up list of levels for calculation of oscillator strengths.

Option 6 (LTC-OSCL) — Sort list into increasing order of energy.

Set up units for printing transition energy. Default — Hartrees.

Option 7 (LTC-OSCL) — Print transition energy in Angstroms.
Option 8 (LTC-OSCL) — Print transition energy in Kaysers.
Option 9 (LTC-OSCL) — Print transition energy in eV.
Option 10 (LTC-OSCL) — Print transition energy in Hz.

Option 19 (LTC-OSCL) — Print eigenvalues and eigenvectors.

Routine OUT
(J,JP,P,Q)

This routine carries out the step-by-step outward integration of a pair of inhomogeneous
Dirac radial equations.

Arguments:
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• J: (input) orbital index of function to be computed

• JP: (input) the join point; the outward integration stops at this tabulation index

• P,Q: (input and output) on input, elements 1 to 3 of both arrays must be tabulated;
on output, the arrays are tabulated up to point JP

Routine(s) called: none

Routine OUTBND—function
(ETRY)

This routine determines whether the trial eigenvalue ETRY is within the bounds (EPSMIN,EPSMAX)

Routine(s) called: none

Routine POLFAX
(I,J)

This routine modifies the Bessel function arrays to include the core-polarisation contribution
for electric dipole transitions.

Routine(s) called: none

Routine POSNFL
(NUNIT)

This routine positions standard GRASP files at the end of the header.

Routine(s) called: none

Routine PRINTA
(IPD,ASFA,ASFB,I,J,OMEGA,FACTOR,LINES,ITRPR)

This routine prints the basic oscillator strength information for transitions between level I
and level J.

Routine(s) called: none

Routine PROP
(IPD)

This routine calculates and/or prints orbital and level properties.

Routine(s) called: DEFECT, ENGOUT, MATOUT, RINT, ZEFR, ZEFE

Routine PRWF
(IPD,J)

This routine prints wavefunctions. There are two modes:

• J> 0 — used as a debug option in SOLVE, wavefunctions for orbital J are printed

• J= 0 — a printout of the grid and all wavefunctions is made
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Routine(s) called: DRAW.

Routine QED
(IPD,IMCP)

This routine estimates the QED corrections to the energy levels due to self-energy and
vacuum polarisation.

Routine(s) called: FZALF, HOVLAP, NCHARG, QUAD, SCREEN, VACPOL.

Routine QUAD
(IPD,RESULT)

The argument RESULT is an approximation to the integral of f(r) from zero to infinity,
where the values of RP(I)∗F(R(I)) are tabulated in the array TA(I). The integral in the
interval zero to R(2) is computed by use of an analytical fit

f(r) = Arσ (4.18)

A five-point closed Newton-Cotes formula (cf. Hildebrand (1974 [17]) p.93) is used to
compute the integral in the interval R(2:MTP). The contribution from the tail of the function
beyond the last tabular point (MTP) is assumed to be negligible. The method uses MTP+3
tabulation points. Array TA should therefore be dimensioned to at least N+4.

Routine(s) called: none

Routine RADGRD
(IPD)

This routine sets up the radial grid R and the associated arrays RP and RPOR in the common
block /GRID/. Different grids are generated depending on whether or not HP is zero.

Exponential grid:

R(I) = RNT*(EXP((I-1)*H)-1) for I = 1, ..., N

Asymptotically-linear exponential grid:

LN(R(I)/RNT+1)+(H/HP)*R(I) = (I-1)*H for I = 1, ..., N

Routine(s) called: DRAW, SETQIC

Option 1 set (ITC-RADGRD) — Print radial grid.

Routine RBAR—function
(N,K,Z)

This routine computes the expectation value of r for a Coulomb function with quantum
numbers n, κ for nuclear charge Z.

Routine REMAIN
(IPD,NIN,NOUT,JASTRT,JBSTRT)

This routine determines the CSF pair with which the MCP package should start computa-
tion. All file checking is assumed to have been carried out before entry into this code.
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Routine REORDR
(NST,NOPEN)

This routine reorders the CSFs on the basis of: (1) total J ; (2) occupation number; (3)
subshell j value and quantum numbers; (4) coupled J values. A linked list sorting method
is used.

Routine(s) called: none

Routine RESTMB
(IPD,NIN,NOUT,JASTRT,JBSTRT)

This routine determines where to start or restart the calculation of MCBP coefficients.

Routine(s) called: none

Routine RINT
(IPD,JA,JB,JK,RESULT)

The value of this function is an approximation to:
∫ ∞

0

(
rk (PiPj + QiQj)

)
(4.19)

Routine(s) called: QUAD.

Routine RINTI
(IPD,JA,JB,MODE,RESULT)

The value of this function is the one-electron integral I(j, k) for orbitals J, K. The analytical
expression for this is given by eq.(9) in Grant et al (1980 [15]).

Routine(s) called: DPBDT, QUAD.

Option 12 set (ITC-RINTI) — Print one-electron integral.

Routine RKCO
(IPD,IBUG1,IBUG2,IBUG3,JA,JB,COR,CORD,INCOR)

For configurations JA, JB, this routine Analyses the tables of quantum numbers set in the
common blocks /M0/, /M1/, /M2/, /M3/ to determine all possible sets of interacting
orbitals which give a non-vanishing Coulomb matrix element, and initiates the calculation
of coefficients.

The following conventions are in force: (1) labels 1, 2 refer to left, right sides of matrix
element respectively. (2) pointers JA1, JB1, JA2, JB2 point to the JLIST array of active
orbitals; IA1, IB1, IA2, IB2 point to the complete list of orbitals.

Routine(s) called: COR, CORD, SETUP, VIJOUT.

• 1.0 Analyse peel shell interactions

• 1.1 Analyse electron distribution in peel. (The full procedure is needed only if the
number of peel orbitals NPEEL≥2)

Find differences in occupations, NDQ, for each peel orbital in turn and use to set up
labels of active orbitals maintaining the convention JA1≤JB1, JA2≤JB2.
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• 1.2 Calculate coefficients for all possible sets of active shells.

There are 4 cases, depending on the value of IDQ, the sum of the absolute differences
NDQ:

1.2.1 IDQ>4 : matrix element null

1.2.3 IDQ=2 : one orbital fixed each side include all possible spectators.

Also IDQ=0 for a matrix element off-diagonal in coupling only. Must sum over all
pairs of orbitals excluding core-core terms.

This section calculates the terms arising from active electrons which are in closed
shells.

1.2.4 IDQ=0 - diagonal case. Include all pairs with JA1=JA2, JB1=JB2.

• 2.0 The diagonal case. Deal with contributions from core orbitals if INCOR=1.

• 2.1 Calculate contribution from core/core terms

• 2.2 Calculate contribution from peel/core terms

• 3.0 Diagnostic print - NW<1

Routine RKINT
(IPD,RAC,IA,IC,RBD,IB,ID,K,IW,RESULT)

This routine evaluates the Breit interaction integrals. If IW=0, it calculates U(r1, r2) in-
tegral. If IW = 1,2, it calculates R̄(k; ac|bd;ω) with ω = ωac if IC = 1, ω = ωbd if IC =
2.

Routine(s) called: QUAD, ZKF

Routine ROTATE
(IPD,IR1,EAL,EOL,FIRST)

This routine rotates the orbital basis. Each pair of orbitals that is constrained by orthogo-
nality is treated by turn. The method used is due to Froese Fischer (1986 [7]).

Routine(s) called: COUNT, DEL12E, NEWCO, RINT.

Option 27 set (ITC-ROTATE) — Perform rotation analysis.

Routine SBSTEP
(IORB,NSTRT,NEND,P,Q)

This routine continues the solution of the homogeneous Dirac radial equation from tab-
ulation point NSTRT to tabulation point NEND. The algorithm of Sienkiewicz and Baylis
(1987 [27]) p.5155, is used.

Routine(s) called: none

Routine SCF
(IPD,IR1,IR2,IP2,CI,EAL,EOL)
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This routine performs the SCF iterations. The procedure is essentially algorithm 5.1 of
Froese Fischer (1986 [7]).

Routine(s) called: DUMP, IMPROV, MATRIX, MAXARR, NEWCO, ORTHSC, PRWF,
ROTATE, SETLAG, TIMER

Routine SCREEN—function
(IPD,J)

This routine estimates the screening (or shielding) for orbital J. The set of rules used by
Froese Fischer in her program MCHF are used.

Routine(s) called: none

Routine SETCOF
(IPD,IR1,J)

This routine sets up the coefficients and orbital pointers for the direct and exchange poten-
tials for orbital J. It also sets up the coefficients and pointers for the inhomogeneous terms
arising from off-diagonal I(a,b) integrals.

Routine(s) called: none

Routine SETCON
(IPD)

This routine sets the values of the fundamental and derived physical constants, and other
useful constants.

Routine SETHAM
(IPD,IR1)

This routine computes the hamiltonian matrix and determines the average energy.

Routine(s) called: CLRX, FCO, GCO, RINTI, SLATER.

Routine SETIOM
(IPD,IR1,IR2,IP2,IR3,IP3)

This routine sets up the I/O datastreams for the MCDF (and SCF) modules. Some checking
is performed.

Routine(s) called: CHEKFL, OPENFL

Routine SETJ
(IS,JS,KS,NS,KJ23)

This routine sets the tables required by the recoupling coefficient package NJGRAF. This
routine loads the common block /COUPLE/ with parameters for the first call of NJGRAF
involving direct integrals. Subsequent exchange calls of NJGRAF must be preceded by a
call of MODJ23 to restore these arrays to their correct initial state.

Routine(s) called: none

Routine SETLAG
(IPD,IR1,FIRST)
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If argument FIRST is .TRUE. this routine sets up the data structure pertaining to the
Lagrange multipliers. If FIRST is .FALSE. it determines new estimates for the multipliers.

Routine(s) called: DACON, QUAD, RINTI, SETCOF, XPOT, YPOT.

Routine SETMC
(IPD)

This routine performs machine-dependent setup.

Routine SETPOT
(IPD,J,JP)

This routine sets up the arrays TF and TG for use by the routines IN and OUT.

Arguments:

• J : (input) index of orbital

• JP : (output) join point; point where TG changes sign

Routine(s) called: none

Routine SETQIC

This routine sets up the coefficients for routines DPBDT, QUAD, RINTI, START, YZK,
ZKF.

Routine(s) called: none

Routine SETUP
(IPD,JA,JB)

This generates the arrays defining the quantum numbers of the states involved in the matrix
element linking configurations labelled by JA, JB.

Routine(s) called: none

Routine SETXUV
(J)

This routine sets up the arrays XU and XV, for use by the routines IN and OUT.

Routine(s) called: none

Routine SETXV
(J)

This routine sets up the inhomogeneous terms for the variation equations.

Routine(s) called: none

Routine SETXZ
(J)
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This routine sets the inhomogeneous terms to zero.

Routine(s) called: none

Routine SKINT
(IPD,RAC,IA,IC,RBD,IB,ID,K,IW,RESULT)

This routine evaluates Breit interaction integrals:

S(k)(a, c; b, d;ω) (4.20)

where ω = ωac if IW = 1, and ω = ωbd if IW = 2.

Routine(s) called: QUAD, ZKF

Routine SKRC
(IS,KAPS,KS,KD1,KD2,KE1,KE2)

This routine determines the range of the tensor rank k for Coulomb integral.

Routine(s) called: none

Routine SLATER
(IPD,JA,JB,JC,JD,JK,RESULT)

The value of this function is the Slater integral as normally defined in terms of the four sets
of quantum numbers a, b, c, d.

Routine(s) called: QUAD, YZK.

Option 11 set (ITC-SLATER) — Print Slater integral.

Routine SNRC
(IS,KAPS,KS,ND1,ND2,NE1,NE2,IBRD,IBRE)

This routine determines the range of tensor rank NU for direct/exchange terms, and classifies
the types of radial integral.

Input variables:

• IS : orbital labels

• KAPS : values of 2κ

• KS : values of 2j + 1

Outputs:

• ND1/NE1 : lowest NU value for direct/exchange types

• ND2/NE2 : corresponding number of contributing NU values: NU = ND1, ND1+2, · · ·,
ND1+2*(ND2-1) etc

• IBRD/IBRE : classify types of radial integrals contributing; negative value implies null
contribution
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Routine(s) called: none

Routine SOLVE
(IPD,J,FAIL,INV,JP,NNP)

This routine performs step 2 in algorithm 5.2 and 5.3 of Froese Fischer (1986 [7]). Some
minor changes have been made.

Arguments:

• J : (input) the serial number of the orbital

• JP : (output) the join point

• FAIL : (output) if .TRUE., the iterations did not yield an acceptable solution (methods
1 and 2)

Routine(s) called: COUNT, DCBSRW, ESTIM, IN, NEWE, OUT, PRWF, QUAD, SET-
POT, SETXUV, SETXV, SETXZ, START

Option 7 set (ITC-SOLVE) — Debug print of iterations.

Option 8 set (ITC-SOLVE) — Debug print of wavefunctions by call to routine PRWF.

Routine SOLVH
(IPD,IORB,FAIL)

This routine solves the homogeneous Dirac radial equation.

Arguments: IORB : (input) index of orbital FAIL : (output) .TRUE. if solution not obtained

The direct potential is assumed tabulated in the common array YP.

Routine(s) called: COUNTX, QUAD, SBSTEP, SETPOT, START, TAIL.

Routine SPEAK
(IPD,IBUG1,IA1,IB1,IA2,IB2,K,X)

This routine outputs MCP coefficients and integral parameters to file on stream NOUTX. Also
print these if IBUG1 = 1.

Routine(s) called: none

Routine SPME
(IPD,I,J,HCOUL,HBAB,HMAG)

This routine calculates the reduced matrix elements for pair I, J in either Coulomb/Babushkin
gauge or for magnetic case.

These are defined in the Brink and Satchler (1993 [4]) sense - i.e. compatible with Pyper
et al (1978 [24]) but not with Grant (1974 [12]).

Routine(s) called: CLRX, POLFAX, QUAD.

Option 12 set (LTC-SPME) — Print integrals.

Option 13 set (LTC-SPME) — Print gauge dependent integrand.
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Option 14 set (LTC-SPME) — Calculate the contributions from various terms.

Option 15 set (LTC-SPME) — Full print if option 14 set; abbreviated otherwise.

Routine SSTC
(IPD,IBUG3,
NLSUB,NQ,NJ,NL,NS,NV,NQR1,NJ1,NV1,NJ2,NV2,COEFF)

This routine uses a table look-up to find JJ − LS transformation coefficients for single
(nonrelativistic) subshells for s, p and d electrons. For orbitals with higher angular momenta
and not more than two electrons, the coefficient is calculated from the relevant 9j-symbol.

Routine(s) called: NJGRAF, GENSUM, KNJ.

Routine START
(IPD,IORB,ITYPE,P0,P,Q0,Q)

This routine sets up P(1:6), Q(1:6), required to start the integration for routines OUT
and SBSTEP.

Arguments:

• IORB : (input) index of the orbital

• ITYPE : (input) 1 = homogeneous equation; 2 = inhomogeneous equation; 3 = varia-
tional equation

• P0 : (input) slope parameter

• P : (output) P(1:6) are tabulated by this routine

• Q0 : (output) first term in the series expansion of Q

• Q : (output) Q(1:6) are tabulated by this routine

Routine(s) called: none

Routine SUMMRY
(IPD)

This routine gives a final summary of the contributions to the energy levels from zero-order,
Breit, vacuum polarisation and self energy. These are given in Rydbergs, Kaysers and eV
if options 27, 28 and 29 are set, respectively, as well as in Hartrees. The energy levels are
written out in order of increasing energy.

Routine(s) called: none

Routine SXCPOT
(IPD)

This routine computes a central potential. Relativistic statistical exchange and correlation
contributions are calculated.
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There are two possiblities for the nonrelativistic statistical exchange potential. If SEPARM is
1 it is the Gaspar-Kohn-Sham exchange potential. If SEPARM is 3/2 it is the Slater exchange
potential.

The relativistic exchange correction factor is given by AH MacDonald and SH Vosko
(1979 [20]), eq.(3.14C).

The relativistic local density approximation statistical correlation potential was computed
by Ramana and Rajagopal (1981 [25]), table I. The high-density values of VC are a private
communication. A high-precision recomputation of this table and its extension to both
higher and lower BETA would be most useful.

The relativistic statistical correlation potential is obtained by interpolating among the values
in the table of Ramana and Rajagopal.

Routine(s) called: DRAW, YZK

Option 6 set (ITC-SXCPOT) — Print statistical potential.

Routine TAIL
(IPD,IORB,P,Q,JP,MTP)

This routine begins the inward integration of the homogeneous Dirac radial equation. With
only minor modifications, the series given by Sienkiewicz and Baylis (1987 [27]) p.5155, is
used.

Routine(s) called: none

Routine TALK
(IPD,IBUG1,NU,IA,IB,IC,ID,ITYPE,COEF)

This routine prints coefficients and integral parameters if IBUG1> 0 and writes them to file.

Routine(s) called: none

Routine TERM—block data

This block data sets up tables of quantum numbers of terms which can be formed by
configurations jq. Symmetry of the table for particle/hole configurations is used to compress
it.

COMMON /TERMS/NROWS,ITAB(31),JTAB(31),NTAB(327)

A row is defined by a subshell angular momentum and an occupation number.

Each entry ITAB gives the number of terms in a row.

Each entry JTAB gives the (starting location −1) of the first triad a row.

Each triad in NTAB is (v, w, 2J +1); here v is the seniority, w resolves any degeneracy in the
seniority scheme and J is the total angular momentum.

Routine TFPOT
(IPD)

This routine calculates the universal Thomas-Fermi potential.
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Routine(s) called: DRAW.

Routine TFWAVE
(IPD,J,MFAIL)

This routine is used to produce estimates of the wavefunctions by use of the Thomas-
Fermi approximation to the direct potential. Routine SOLVH is used to obtain the radial
wavefunctions.

Routine(s) called: SOLVH.

Routine TMSOUT

This routine prints the table of relativistic subshell quantum numbers set in block data
TERMS .

Routine(s) called: none

Routine TNSRJJ
(IPD,IBUG3,IBUG4,IBUG6,
KA,IOPAR,JA,JB,IA1,IA2,VSHELL)

The main program for evaluating the reduced matrix elements of a one particle operator
for configurations in jj-coupling.

Routine(s) called: CFP, FIXJ, GENSUM, IROW1, ITRIG, NJGRAF, SETUP, VIJOUT.

Routine TRSORT
(IPD,IREAD,IWRITE,GTYPE,IPRINT)

This routine sorts MCP coefficients into list based on integrals rather than CSF. A tree sort
is used to save space, the CSF pair labels and coefficients are not read into arrays until the
sorting has been done.

Routine(s) called: HEADFL, POSNFL.

Routine VAC2
(IPD)

This routine sets up the second-order vacuum polarisation potential using eq.(1) and (4) of
Fullerton and Rinker (1976 [8]). The potential is accumulated in array TB(I),I=1,...,N
which is in common block /TATB/.

Routine(s) called: FUNK, QUAD.

Option 19 set (KTC-VAC2) — Print vacuum polarisation potential.

Routine VAC4
(IPD)

This routine sets up the fourth-order vacuum polarisation potential using eq.(11) and (12)
of Fullerton and Rinker (1976 [8]). The potential is accumulated in array TC(I),I=1,...,N.
It is added to the second-order vacuum polarisation potential and transferred to array TB
in common block /TATB/.
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Routine(s) called: FUNL, QUAD.

Option 9 set (KTC-VAC4) — Only second-order vacuum polarisation potential is required.

Option 19 set (KTC-VAC4) — Print vacuum polarisation potential.

Routine VACPOL
(IPD)

This routine controls the setting up of the vacuum polarisation potential for the given nu-
clear charge distribution at each grid point using the analytic functions defined by Fullerton
and Rinker (1976 [8]). The potential is accumulated in array TB(I),I=1,...,N which is in
common block /TATB/.

Routine(s) called: VAC2, VAC4, VACUSR.

Option 7 set (KTC-VACPOL) — Use user-defined vacuum polarisation potential. This is
set in routine VACUSR.

Routine VACUSR
(IPD)

User-defined vacuum polarisation potential. User must supply code and delete error section.
The potential is stored in array TB of common block /TATB/.

Option 19 set (KTC-VACUSR) — Print user-defined vacuum polarisation potential.

Routine VIJOUT
(IPD,JA,JB)

This routine prints out tables of configurational quantum numbers defined by routine
SETUP for current matrix element.

Routine(s) called: none

Routine WEIGHT
(IPD)

This routine prints the weights of the largest five CSF contributors to each ASF. Also it
prints weights of configurations.

Routine WFN—function
(R,RCUT,N)

This routine calculates the cutoff function

Wn(r, rc) = 1− exp (−(r/rc)n) (4.21)

for use in routines CPPOT and POLFAX.

Routine(s) called: none

Routine XPOT
(IPD,J)

This routine tabulates the exchange terms (the first terms on the right-hand sides of eq.(14),
Grant et al (1980 [15]) for orbital J. The exchange terms are stored in the common arrays
XP and XQ.
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Routine(s) called: DRAW, YZK

Routine YPOT
(IPD,J)

This routine tabulates the potential function Y (r) (eq.(14) in Grant et al (1980 [15])) for
orbital J. The function is tabulated in the common array YP.

Routine(s) called: DRAW, YZK

Option 6 set (ITC-YPOT) — Print out direct potential.

Option 15 set (ITC-YPOT) — Print out composition of direct potential.

Routine YZK
(IPD,K,I,J)

This routine evaluates Hartree Y - and Z-functions:

Y (k)(i, j; r) = Z(k)(i, j; r) + W (k)(i, j; r) (4.22)

where

Z(k)(i, j; r) =
∫ r

0

(
s

r

)
(Pi(s)Pj(s) + Qi(s)Qj(s)) ds (4.23)

and

W (k)(i, j; r) =
∫ ∞

r

(
r

s

)k+1

(Pi(s)Pj(s) + Qi(s)Qj(s)) ds (4.24)

The Y -function is tabulated in common block /TATB/ in array TB, the Z-function in array
TA.

The correction to Z(0) is in the manner of Froese Fischer (1977 [6]) p.235.

Routine(s) called: DRAW

Routine ZEFE
(IPD,J,ZE)

This routine calculates an effective charge ZE such that in a Coulomb field of charge ZE the
eigenvalue of orbital J is equal to the input value E(J).

Routine(s) called: none

Routine ZEFR
(IPD,J,R,ZE)

This routine calculates an effective charge ZE such that in a Coulomb field of charge ZE the
mean radius < r > of orbital J is equal to the input value R.

Routine(s) called: RBAR

Routine ZKF
(K,I,J)
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This routine evaluates Hartree Z-functionals:

Z(k)[f(r); r] =
∫ r

0

(
s

r

)k

f(s) ds (4.25)

The Z-functional is tabulated in common block /TATB/ in array TB. The f -function is
assumed tabulated in array TA.

90



Chapter 5

GRASP2 — NJGRAF routines
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These routines are the NJGRAF package as supplied with GRASP2.

Routine NJGRAF
(IPD,IBUG3,RECUP,IGEN,FAIL)

Program to calculate a general recoupling coefficient.

These routines have been take from a CPC library program (cat. no. ABBY). We refer
the user to Bar-Shalom and Klapisch (1988 [3]) for details. Incorporation of NJGRAF
into GRASP has necessitated certain changes. These are described in detail in the routine
headers.

This version is slightly modified. The changes are as follows:

1. Parameter IGEN has been included in the argument list: IGEN= 0 normal call to
NJGRAF
IGEN= −1 GENSUM is not called

2. The contents of common blocks /ARGU/ and /SUMARG/ are used by GENSUM to
calculate the recoupling coefficient. These common blocks have been removed from
GENSUM. Their contents are passed to GENSUM through the argument list instead,
so that NJGRAF can be called to set up formulae for both the direct and exchange
cases in COR and BREIT.

3. Extra dimension tests have been included in routines NJGRAF, PRINTJ, SPRATE,
VAR and ZEROJ. These are discussed below.

4. An extra routine RDIAG has been introduced to remove an extended DO loop from
GENSUM, to conform with the FORTRAN 77 standard.

• IPD
output datastream number

• IBUG3
debug prints in NJGRAF and GENSUM if 1

Description of some common blocks.

• COMMON BLOCK COUPLE

– M
the total number of angular momentum values in the initial and final states

– N
the number of basic angular momentum values that are coupled

– J1(I), I=1,M
the angular momentum values stored as 2J + 1

– J2(I,J), I=1,(N-1), J=1,3
the position in the J1 array of the initial state triads
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– J3(I,J), I=1,(N-1), J=1,3
the position in the J1 array of the final state triads

– FREE(I), I=1,M
if FREE(I) = .TRUE., no reference is made to the value of J1(I) when es-
tablishing a formula in NJGRAF. GENSUM may then be called for repeated
occurrences of this formula with differing values of J1(I). If J1(I) does not vary
between calls to GENSUM then FREE(I) should be set .FALSE. so that zero
branches can be removed before the formula is established.

• COMMON BLOCK ARGU

– J6C
the number of elements in the K6 array

– J7C
the number of elements in the K7 array

– J8C
the number of elements in the K8 array

– J9C
the number of elements in the K9 array

– JWC
the number of columns in the KW array

– J6(I), I = 1,J6C
each entry corresponds to a factor SQRT(2J+1) in RECUP. The value of J6 gives
position in J1 array where J value is found

– J7(I), I = 1,J7C
each entry corresponds to a factor (-1)**J in RECUP

– J8(I), I = 1,J8C
each entry corresponds to a factor (-1)**(2J) in RECUP

– J9(I), I = 1,J9C
each entry corresponds to a factor (2J+1)**(-0.5) in RECUP

– KW(I,J), I = 1,6, J = 1,JWC
each column corresponds to a Racah coefficient in RECUP

– JDEL
the number of delta functions

– LDEL(I,J), J = 1,2
the arguments of the delta functions

– SUMVAR(I)
.TRUE. for ang. mom. I (a summation variable)

– MP
the index of the last variable
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The arrays J6, J7, J8, J9 and KW, are evaluated by NJGRAF. The summation over the
variables in J6, J7, J8, J9 and KW, and the evaluation of RECUP is carried out in GENSUM.
GENSUM can be re-entered directly to evaluate different recoupling coefficients with the
same structure by just altering the numbers in the J1 array.

This is the main program. It handles all the analysis of the recoupling coefficient without
referring explicitly to the values of angular momenta which are in J1(J), except for zero in
case FREE = .FALSE. . Like NJSYM it prepares arrays of arguments for phase factors,
(2*J+1) factors and 6J-coefficients to be computed in GENSUM, which can also be called
separately when only the numerical values of angular momenta change. These variable
angular momenta should be declared FREE(J) = .TRUE., so that the formula prepared for
GENSUM should be correct when J1 is not zero. FAIL will be TRUE when the recoupling
coefficient is zero because of unsatisfied delta or other similar causes.

This version holds the array dimensions in PARAMETER statements. The dimensions are
labelled:

• MANGM
dimension of the J1 and FREE arrays in /COUPLE/, and the first dimension of the
LINE and LCOL arrays in /TREE/. Also the dimension of the SUMVAR array in
/ARGU/, and of the INVER array in routine SPRATE. It is tested for M on entry
to NJGRAF, and for MP in routine SPRATE.

• MTRIAD
dimension of the J2 and J3 arrays in /COUPLE/. The dimensions of these arrays are
checked on entry to NJGRAF in addition MTRIAD sets the dimension of the JSUM6
array and the first dimension of the JSUM4 and JSUM5 arrays in /SUMARG/. Also
gives the dimensions of some temporary working arrays in SPRATE and GENSUM.
In these cases MTRIAD sets the maximum number of summation variables in any
particular sum, which is tested in SPRATE.

• M2TRD
(=2∗MTRIAD) dimension of the J23, ARROW and TABS arrays in /TREE/. Also
the dimension of the NPOINT array in /GRAPH/.

• M4TRD
(=4∗MTRIAD) dimension of the JDIAG, ARR, IL and IH arrays in /GRAPH/, and
of the IAL array in /BUILD/.

• M3MNGM
dimension of the J6 array in /ARGU/, tested in SPRATE dimension of the J7 array
in /ARGU/, tested in SPRATE dimension of the J8 array in /ARGU/, tested in
SPRATE

• MANGMP
dimension of the J9 array in /ARGU/, tested in SPRATE MANGMP also sets the
dimension of the J6P, J7P, J8P and J9P arrays in /SUMARG/, and of the JNS array
in routine VAR. The dimension of the JNS array is tested in VAR.
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• M6J
dimension of the JW(OR KW) and LDEL arrays in /ARGU/, and of the JWORD and
INV6J arrays in /SUMARG/. Also the second dimension of the JSUM4 and JSUM5
arrays in /SUMARG/. In addition it gives the dimensions of a number of temporary
working arrays in routines SPRATE and GENSUM. M6J is tested in SPRATE.

• MFACT
dimension of the factorial array GAM in /FACTS/.

• MSUM
dimension of the NBJ, NB6J, K6CP, K7CP, K8CP and K9CP arrays in /SUMARG/.
MSUM is the maximum number of sums allowed, and is tested in routine SPRATE.

• MTAB
dimension of the JTAB array in routine PRINTJ. MTAB is tested in PRINTJ.

• MZERO
dimension of the JZERO array in /ZER/. MZERO is tested in routine ZEROJ.

Routine BUBBLE
(IPD,IBUG3,JPOL,FAIL)

This routine reduces a circuit of order 2, giving delta function and phase factors.

Routine CHANGE
(L,K)

This routine exchanges the free ends in either first or last triad of JDIAG.

Routine CHVAR
(JP,NBC,KBC,JT,JINV,NSUM)

This routine changes the order of summation variable to be able to perform separately the
summations in GENSUM.

Routine CUT1L
(IPD,IBUG3,FAIL)

Cut on one line, that was left as a free end in JDIAG. Puts corresponding delta in J23.

Routine CUT2L
(IPD,IBUG3,FAIL)

Cut on two lines that were left as free ends in JDIAG. Puts corresponding delta in J23.

Routine CUTNL
(IPD,IBUG3,FAIL)

This routine examines the case where there are more than two free ends, but they are
contiguous, so that the graph can be cut without destroying the flat structure.

Routine DELTA
(IPD,IBUG3,JA,JB,FAIL)

95



Test for delta(JA,JB). If they are summation variables, the second is changed into the first
everywhere. If they are fixed, their value is checked, and FAIL put to .TRUE. if they differ.

Routine DIAGRM
(IPD,IBUG3,JUMP)

This routine builds up a flat diagram from the triads J23 and places them in JDIAG. Arrows
are in ARR (integer). The diagram is built so as to maximise the number of triads involved,
within a one-step-forward-check process. If the diagram does not include all the NBTR
triads, it will have ’free ends’. JDIAG has dimension double that of J23, because the path
may proceed either way.

Routine GENSUM
(IPD,IBUG3,
J6C,J7C,J8C,J9C,JWC,J6,J7,J8,J9,JW,JDEL,LDEL,
MP,J6P,J7P,J8P,J9P,JWORD,NLSUM,NBJ,NB6J,
K6CP,K7CP,K8CP,K9CP,JSUM4,JSUM5,JSUM6,INV6J,
RECUP)

This routine carries out the summation over coefficients defined by the arrays J6, J7, J8,
LDEL and JW to give RECUP. The entry is either made from NJGRAF or directly assuming
that the arrays J6, · · ·, JW have already been determined by a previous entry to NJGRAF
and that the summation is required for another set of J values defined by the array J1.
RECUP is the recoupling coefficient.

Routine(s) called: DRACAH, RDIAG.

Routine INTAB

This routine called at the end of DIAGRM, fixes the arrays IH and IL - so to speak hardware
and logical addresses of triads in JDIAG. Also determines the number of free ends NFREE
and their location ITFREE.

Routine LOLPOP
(IPD,IBUG3,FAIL)

This routine reduces a loop with one line and one node in the flat graph.

Routine(s) called: DELTA, PHASE2

Routine NEIBOR
(LC,L1,L2)

This routine gives the positions of the other two arguments in the triad.

Routine ORDTRI
(IPD,IBUG3)

This routine orders the triads which were left with free ends as consequence of cutting, so
that the new graph will start there.

Routine OTHERJ
(LIN,J,LO,LCO,K)

96



Gives the other triad where a given J occurs and its position.

Routine PHASE
(L,JM,NDIM)

This routine evaluates the phase factor arising from non-cyclic permutation of arguments
in triad L. JM may be either J23 or JDIAG.

Routine PHASE2
(J)

This routine adds a phase factor (-1)**2J.

Routine POLYGN
(IPD,IBUG3,JPOL)

This routine reduces a circuit of arbitrary order NC. It exchanges nodes on the flat diagram
until the distance on the axis between nodes equals one. Each exchange introduces a
summation variable and a 6j-symbol. The circuit has a maximum of NPART=2 disconnected
parts on the axis.

Routine PRINTJ
(IPD,IBUG3,NAMES,JP)

This routine prints intermediate results in standard form from wherever it is called.

Routine RDIAG
(I,J,IK1,IK2,ICHAN,MAT,JSUM,J12)

This routine is called by GENSUM to establish the range of values of the summation
variables. This replaces an extended range DO loop in GENSUM, to conform with the
FORTRAN 77 standard.

Routine(s) called: none

Routine SEARCH
(IPD,IBUG3,FIND)

This routine locates circuits or loops of order NC. NPOINT(NC) are the indices of the points(triads)
pertaining to the first such loop found. NPART is the number of separate parts (groups of
contiguous points) on the axis of the flat graph. IPARTS is the number of points in the
smallest part. IPARTL is the number of points in the largest part. The routine finds all
the possible loops of order 3 and 4. For NC≥ 5, it looks for only those who are partitioned
in NPART≤ 2 which can eventually reduce to a loop of order 4 without breaking the basic
structure of the flat graph. ICROSS= −1, if lines cross.

Routine SETDM

This routine sets dimensions of arrays.

Routine SETTAB
(IPD,IBUG3,FAIL)

This routine builds up the unstructured graph. Sets the array J23, containing the two
lists of original triads J2 and J3, and the corresponding arrows on the angular momenta
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lines. Also establishes the numerical and phase factors connecting recoupling coefficient and
graphs, according to Yutsis, Levinson and Vanagas. For this purpose determines the total
J .

Routine SPRATE
(IPD,M)

This routine prepares the information to be transferred to GENSUM for numerical evalua-
tion.

Routine SQUARE

This routine reduces a circuit of order 4 in the two cases which are left over by POLYGN,
namely two disconnected groups of two points and one group of two points plus the two
ends of the axis. In the latter, the end of the axis is transferred to the beginning. In this
process, one summation variable and two 6j-symbols are introduced.

Routine TRDEL
(JJ1,JJ2,JJ3,NBN,FAIL)

This routine tests for triangular delta. If not satisfied FAIL=.TRUE. .

Routine TRIANG
(FAIL)

This routine reduces a triangle having one apex at either end of the axis of the flat diagram.
This introduces one 6j-symbol and some phase factors.

Routine VAR
(IPD,JN,JNS,JNC,JNSC,JBC,SUMVAR,MP,M,INVER)

This routine tests for variable character and put in JNS if yes, and JN now contains 0.

Routine WAY
(L,KA,KB,ICH,NB)

Tests one step forward if the way is free. First and second arguments are interchanged or
not according to ICH=−1 or +1.

Routine ZEROJ
(IPD,IBUG3,J,JZ,FAIL)

This routine suppresses one line and two nodes of the unstructured graph and introduces
zeros in the triads J23. As a consequence the other two arguments of the triad are put
equal. If there was already a zero in the triad which is changed, it is a special case.

Routine DRACAH
(I,J,K,L,M,N,RAC)

This routine calculates Racah coefficients. The arguments I, J, K, L, M, N should be twice
their actual value. It works for integer and half-integer values of angular momenta. The
routine makes use of the GAM array, thus routine FACTT must be called before this routine
is used. Written by NS Scott.
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Routine FACTT

This routine calculates the logs of factorials required by the Racah coefficient routine
DRACAH. Written by NS Scott.
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Chapter 6

GRASP2 — system routines
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These are system dependent routines used in GRASP2.

Routine CALEN

CALEN returns in common block TITL the time and date at execution of program.

Routine TIMER
(I)

This routine calculates either the CPU time which is left or has been used. It has three
modes:

• I=−1 used to initialise the time stored in TIME1

• I=0 writes out time used in seconds since last call

• I=1 returns in TIME2 the time left in seconds
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